
dbView
A Database Access Tool

The Data Management Section

Multimission Image Processing System

of

The Jet Propulsion Laboratory

John Rector, CDE

Jeffery Jacobson

Marc Sarrel

Jimmie Young

Leo Bynum

Version 1.4

November 28, 1994

D
M

M

Table Of Contents
Table Of Contents

Table Of Contents iii

Licensing ix

Preface 11

1 Where To Get Copies Of This Document 11

2 Typographic Conventions 11

3 Syntax Rules 12

3.1 Command Keys 12

3.2 Command Syntax 12

4 Default Values For Prompts 13

Release Notes & Installation Guide 15

5 Release Notes 15

5.1 What’s New In Version 2.0 15

6 Installing dbView 16

6.1 Setting Up A Sybase Environment 16

Tutorial 19

7 Introduction 19

7.1 A Little More About dbView 20

8 Getting Started 21

8.1 Sybase System Stored Procedures 23
iii

Table Of Contents
8.2 Ending The dbView Session 25

8.3 What You’ve Learned 26

9 Running And Exiting From dbView 27

10 Connecting To A Database Server 28

10.1 The Connect Retry Prompt 28

10.1.1 Increasing The Time-out Period 29

10.1.2 The Show Server Command 29

10.1.3 Can’t Find The Interfaces File 29

10.1.4 Getting The List Of Databases And Accessing A Database 30

10.1.5 Exiting After Connection Failure 31

10.1.6 The Connect command 31

10.1.7 Using A Default Database 32

11 Connecting To Multiple DBMS’s Simultaneously 33

11.1 Defining Multiple Connections 33

11.2 Using Connection Handles 34

11.3 Handles And The Password Server 37

11.4 Handles And dbView’s Batch Mode 38

12 Executing A Command 39

12.1 Cancelling A Command 40

12.1.1 Cancelling A Command Using <control-c> 40

12.1.2 Cancelling A Database Command Using <control-c> 40

12.1.3 The reset Command 40

12.2 Editing Commands 41

12.3 When dbView Encounters An Error In An SQL Command 42

12.4 The Set Command 42

12.4.1 Set Command Definitions 43

12.5 Saving dbView’s Environment 46

12.6 Timing Commands 46

12.7 Altering The Database Table Display Format 48

12.7.1 Table Format 48

12.7.2 List Format 49

12.7.3 Export Format 50

12.7.4 Copy And Pasting Exported Data 52

12.8 Displaying Table Header And Footer Information 53

12.9 The Page command 53
iv

Table Of Contents
12.10 Real Number Formats 54

12.10.1 The f Format 54

12.10.2 The E or e Format 56

12.10.3 The g or G Format 57

12.10.4 The Feedback Command 58

12.10.5 Using Sybase’s “Set” Command In dbView 58

13 Escaping To The Operating System 60

14 The Help Command 61

14.1 The History List 63

14.1.1 Setting The Length Of The History List 64

14.2 The last Command 64

15 Saving Commands And Data 66

15.1 The Show File Command 67

15.2 The Directory Command 67

16 Macro Commands 72

16.1 Defining And Running A Macro 72

16.1.1 The Show Macro Command 74

16.1.2 Editing A Macro 75

16.1.3 Using Edit Macro To Create Another Macro 76

16.2 Using The History List In A Macro Command 77

16.3 Using Macros To Redefine dbView Commands 78

16.4 Using Variables In Macro Definitions 81

16.4.1 Local Variables And Default Values 82

16.4.2 The Special Local Variable $password 84

16.4.3 Summarizing Macro Local Variable Rules 85

16.5 Repeated Execution Of Macros 86

16.6 Including, Saving, And Replacing Macro Definitions 87

16.6.1 Saving Macros To A File 87

16.6.2 Removing A Macro Command 87

16.6.3 Exiting From dbView Once You’ve Made Changes To Macros 88

16.6.4 Including A Macro File 89

16.6.5 The Default Macro File 89

16.6.6 Replacing A Set Of Macros 90

16.6.7 Sharing Macro Files 91
v

Table Of Contents
17 Global Variables 92

17.1 The global Command 92

17.1.1 Seeing Global Variable Assignments 93

17.1.2 The Expand Global Command 93

17.2 Referencing Global Variables In Macros 93

17.2.1 The Expand Macro Command 94

17.3 The Remove Global Command 95

17.4 Undefined Global Variables In Macros 95

17.5 Global Variables And Macro Files 96

18 Finding Out About Database Objects 97

18.1 Sybase Database Objects 97

18.1.1 Table Information 98

18.1.2 View Information 100

18.1.3 Stored Procedure Information 102

18.1.4 Trigger, Default And Rule Information 104

18.2 Illustra Database Objects 104

19 Defining and Running Reports 105

19.1 Sample Reports 105

19.1.1 The Report mission.rpt 105

19.1.2 The Report planets.rpt 110

19.2 Summarizing dbView’s Report Writing Capabilities 115

19.2.1 Report Functions 115

19.2.2 Formatting Character Strings 116

19.2.3 Formatting Numbers 116

19.2.4 Special Variables Used In Report Footers 117

19.2.5 Options For Report Printing and Mailing 117

19.2.6 More About The Print Section 118

19.2.7 Cancelling A Report Specification Command 118

19.2.8 Error You May Encounter When Using Report Commands 118

19.3 Using The History List For Report Generation 120

19.4 Hints For Creating Reports 120

20 The Script Command 122

20.1 Some Characteristics Of Scripts 123

20.1.1 Scripts Can Be Nested 123

20.1.2 Putting Comments In A Script File 123
vi

Table Of Contents
20.1.3 Pausing In A Running Script 123

20.1.4 Rules To Remember When Running Scripts 124

20.2 Example Script Files 125

20.2.1 Loading SQL commands 125

20.2.2 Generating And Printing A Report 126

20.2.3 Copying A Database Tables Contents 127

21 dbView’s Batch Mode 135

22 Error Messages 136

22.1 What’s In An Error Message? 136

22.1.1 The Banner Line 136

22.1.2 The Sybase Error Number 137

22.1.3 The Message 137

22.2 Some Common Login Errors 138

22.2.1 Incorrect User Name Or Password 138

22.2.2 Incorrect Server Name Or Server Name Not In Interfaces File 138

22.2.3 Incorrect Database Name 139

22.2.4 Server Is Not Running 139

22.2.5 Can’t Reach Machine Named In Interfaces File 140

Database Bibliography 141

23 General Relational Database References 141

24 The SQL Language 141

25 Books About Sybase 142

26 Sybase Manuals 143

Index 155
vii

Table Of Contents
viii

Licensing
Licensing

END-USER LICENSE AGREEMENT

This End-User License Agreement (this “Agreement”) is by and between The Jet Propulsion Laboratory,

a part of the California Institute Of Technology (“The Jet Propulsion Laboratory”) and the end-user of

the Software contained in the accompanying package (“you” or “your”).

RECITALS

A. The Jet Propulsion Laboratory is the developer of and the owner of world-wide rights to the “Soft-

ware” as defined hereinbelow.

B. “Software” shall mean the machine readable software program dbView and associated files in the

accompanying package, and any modified version, upgrades and other copies of such programs

and files.

C. You desire to obtain a non-exclusive license to use the Software and The Jet Propulsion Laboratory

desires to grant you said license, subject to the terms and conditions set forth in the Agreement.

D. The Software includes the Open Client/C library from Sybase Corporation. The Software can not be

run on any machine without first obtaining a valid license for the Open Client/C library. The num-

ber of users who are allowed to use the Software is limited by the number of users covered by the

Open Client/C license.

NOW, THEREFORE, in consideration of the premises and the mutual covenants herein contained, the

parties hereto agree as follows:

1. Grant of Non-Exclusive License.
Subject to the terms and conditions of this Agreement, The Jet Propulsion Laboratory hereby grants to

you a non-exclusive license to use the Software and you hereby accept said non-exclusive license. You

hereby acknowledge that the licensor and the party-in-interest in this Agreement is The Jet Propulsion

Laboratory.

2. Scope of Use.
The Software may be operated on multi-user or networked systems, subject to any restrictions that result

from Sybase Corporation licensing agreements.

3. Proprietary Rights.
You acknowledge that the program code, structure and organization of the Software is the confidential

copyrighted property of The Jet Propulsion Laboratory and is a valuable trade secret of The Jet Propul-

sion Laboratory and is licensed to you on a non-exclusive basis. You agree to hold such trade secrets in
ix

Licensing
confidence. You further agree not to translate, disassemble or reverse engineer the Software, in whole or

in part, or to use the documentation (“Documentation”) for any purpose other than to support your use

of the Software.

4. No Other Rights.
The Jet Propulsion Laboratory retains title and ownership of the Software and the Documentation on all

diskette copies and all subsequent copies of the Software, regardless of the form or media in or on which

the original and other copies may exist. Except as stated above, this Agreement does not grant you any

rights to patents, copyrights, trade secrets, trademarks or any other right in respect of the Software or the

Documentation.

5. Term.
The license is effective until terminated. The Jet Propulsion Laboratory has the right to terminate your

license immediately if you fail to comply with any term or condition of this Agreement. Upon any such

termination, you must destroy the original and any copies of the Software and its documentation.

6. Limitation of Liability.
IN NO EVENT WILL The Jet Propulsion Laboratory BE LIABLE TO YOU FOR ANY CONSEQUENTIAL

OR INCIDENTAL DAMAGES, INCLUDING BUT NOT LIMITED TO ANY LOST PROFITS, LOST

DATA, LOST TIME, OR OTHER LOSSES, EVEN IF AN The Jet Propulsion Laboratory REPRESENTA-

TIVE HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES, OR FOR ANY CLAIM BY

ANY PARTY.

7. Choice of Law.
This Agreement will be governed by and construed and enforced in accordance with the laws in force in

the State of California.

8. Integration.
You acknowledge that you have read this Agreement, understand it and that it is the complete and

exclusive statement of your agreement with The Jet Propulsion Laboratory which supersedes any prior

agreement, oral or written, between The Jet Propulsion Laboratory and you for this product. No varia-

tion of the terms of this Agreement will be enforceable against The Jet Propulsion Laboratory unless The

Jet Propulsion Laboratory gives its express consent, in writing signed by an officer of The Jet Propulsion

Laboratory.

9. Consent to Terms of Agreement.
You agree that any use by you of the Software constitutes your consent to be bound by the terms and

conditions of this Agreement.

The Jet Propulsion Laboratory

California Institute Of Technology

4800 Oak Grove Drive

Pasadena, California 91109–8099

USA
x

Preface
Preface

1 Where To Get Copies Of This Document

A Postscript version of this document, named dbView.ps , is located on the MDMS WWW

server. Use the following URL to locate it:

http://www-mipl/mdms/MDMS.html

2 Typographic Conventions

In this document, we use different typographic styles to signify how a word is being used.

Database and file names appear in normal Courier:

The catalog database…

The file /usr/franklin/dbView …

Database object names, tables, views, stored procedures, etc., as well as the names of fields

within tables, are in italic type:

The examples in this document use the tables missions and planets.

The missions table contains the fields, mission, scId, objective,…

The names of program commands and their formal syntax specification are italicized:

To display the time of execution of an SQL statement, use the set timer
command. The syntax for the command is:

set timer { on | off }

Values supplied to a program are placed between quotation marks when they appear in the

body of the document:

The database server user name in our example is “franklin”…
Where To Get Copies Of This Document — 11

Preface
Terminal, or screen, I/O examples appear in Courier type. Responses to prompts that are sup-

plied by a user appear in Courier bold type:

To login to a database, use the connect command. At each prompt, you must supply a con-

nection parameter, like so:

1> connect

userName []: franklin

password:

server []: CATALOGDBS

database []: catalog

3 Syntax Rules

3.1 Command Keys

Command keys appear in angle brackets. For example, when you are asked to press the return

key on you keyboard, the text looks like this:

Press the <return> key.

Also, combinations of command keys appear in angle brackets and are separated by a dash.

For example:

To cancel a command, press <control-c>

This command asks you to press the control and the c key simultaneously.

3.2 Command Syntax

• An options list, where one option must be selected appear between curly braces. A verti-

cal bar separates options and stands for the word “or”. For example, the command:

set timer {on | off}

means that the set timer command takes one of two options: either “on” or “off”, so the

valid command are:

set timer on

set timer off

• Names that signify a value you must supply appear in angle brackets:

set page <number of lines>

In this example, you are expected to supply a number representing the number of lines to

appear on a viewing page; for example:
12 — Syntax Rules

Preface
set page 10

• Optional parameters appear in square brackets, “[]”. For example:

show set [<command name>]

signifies that the show set command can be used with, or without, a parameter. For exam-

ple:

show set

show set timer

4 Default Values For Prompts

If a command issues a prompt, it will very often have a default value associated with it. You

accept the default value by pressing the <return> key. Default values appear in square brack-

ets following the prompt. The connect command that prompts you for database login informa-

tion is an example of a command that uses default values:

1> connect

userName [franklin]: <return>

password:

server [PDSSERVER]: CATALOGDBS

database [master]: catalog

The command has four prompts. In the example, we accepted the userName default, “fran-

klin”, by pressing the <return> key. There is no default—no values in square brackets—

for the password. The default values for the last two prompts were not used; new values

were supplied instead.
Default Values For Prompts — 13

Preface
14 — Default Values For Prompts

Release Notes & Installation Guide
 Release Notes & Installation Guide

5 Release Notes

dbView is a command line interface to Sybase database servers. If you have bugs to report or

suggestions to make that will improve the product or its documentation, please send an elec-

tronic mail message to:

mdms@candide.jpl.nasa.gov

Bug reports should include a description of the bug, including a simple example that illus-

trates the bug. Also include any error messages that were returned by the program at the time

that the bug occurred.

All correspondence — bug reports or suggestions — should include information that will

allow us to contact you. Include your name, organization and either your electronic mail

address or telephone number.

For further information about this product, contact the MIPS Data Management Cognitive

Design Engineer:

John Rector

Jet Propulsion Laboratory

MS 168–522

4800 Oak Grove Driver

Pasadena, CA 91109–8099

Email: jar@next1.jpl.nasa.gov

5.1 What’s New In Version 2.0

• dbView macros have been changed so that you can include more than one SQL statement.

• Comments now appear in the body of the macro at any point you want to see them. Blank

lines are also supported. These additional features caused us to change the syntax of mac-

ros. Version 1.n macros won't run with dbView version 2.

• Macro commands have a print statement that displays strings when a macro is run.

• They way in which individual macros can be saved to a file has been improved and
Release Notes — 15

Release Notes & Installation Guide
extended.

• A new set command, set feedback on or off has been added. When turned on, dbView will

issue a string of dots on the command line while waiting for SQL statement to execute in

the server.

• The server command will list the Sybase servers known to dbView.

• The few known bugs in dbView have been fixed.

• Sections of this document have been reordered to make the presentation of material more

logically.

6 Installing dbView

dbView is a program written in ANSI Standard C and is in compliance with the POSIX.1

library interface protocol. Normally, you will receive an executable version of the program

built to run on your particular machine. In this case, you don’t need to build the program, so

installation is just a matter of copying the program to a directory from which it can be run.

Ask your system administrator for directions about where executables are located on your

machines or network.

dbView connects with Sybase servers using Sybase’s Open Client/C Library. Before you run

dbView, you must have a run-time license from Sybase for this library. It is illegal to run dbView
without this license. If you are using a terminal window to access another machine on which

dbView is located, you don’t have to have a license on your machine, but the machine you’re

accessing does need a license.

Before you can use dbView to connect to a Sybase server, you’ll need to configure your

machine to include a Sybase client environment. dbView is not unique in this requirement;

you can’t run any client process connecting to a Sybase server without a Sybase environment.

6.1 Setting Up A Sybase Environment

When you run dbView, it first attempts to connect to a Sybase database server. For this to be

successful, you must set-up the environment necessary to make the connection. If you’re

lucky, somebody has already done this for you, but if that’s not the case, here is what you

must do.

The environment variable (Unix) or logical name (VMS) SYBASE must be defined as the direc-

tory where the Sybase interfaces file is located, and this file must be readable by you. The

interfaces file contains network information that dbView needs to make a connection to a

database server. The file is like a telephone book. It contains server names and connection

information just as a telephone book contains names and telephone numbers.

You can check to see if everything is in order with one simple operation: try to read the

interfaces file in an editor using the environmental variable (logical name) $SYBASE. In
16 — Installing dbView

Release Notes & Installation Guide
our example, we use the Unix editor vi and include $SYBASE as part of the full file name:

% vi $SYBASE/interfaces

If the file does not appear in the editor, you have a problem that must be fixed. The problem

could be:

1. The interfaces file does not exits.

2. The variable SYBASE is not defined or does not point to the directory where the inter-

faces file can be found.

3. You don’t have read access to the interface file or its directory.

Once you can view the interfaces file, you should take some time to examine its contents

because it contains the names of all of the servers you can potentially connect to. In the follow-

ing example interfaces file, the server names have been marked in bold type; they are:

MIPSDB1, CATALOGDBS and PDSYBASECN. If you were using this interfaces file, you

would use one of these names when dbView prompted you for a server name.

#

File: $SYBASE/interfaces

#

Function: The interfaces file used by Data Management

Development.

#

Date: June 19, 1992

#

MIPSDB1

 query tcp sun-ether milano 1040

#

CATALOGDBS

 query tcp sun-ether mantua 1040

 query tcp sun-ether venice 1040

#

PDS Central Node

#

PDSYBASECN

 query tcp sun-ether thorndyke 2030

(Note: You should never edit the interfaces file; leave that task to a database administrator.

The syntax of the file is quite particular; and, if you change it, it may not work properly.)

The indented lines following server name contain the connection information — this is the

part of the interfaces file that is equivalent to a telephone number. The connection information

for a server may change with time; but, as long as the server names remain the same, you

should be able to make your connection. There is only one case when you’ll need to look at the

connection line. We’ll cover that now.
Installing dbView — 17

Release Notes & Installation Guide
Using the telephone example again, suppose that you know you’ve got the right name and

number, but you still can’t make a connection. It may be the lines are down or the telephone

you’re trying to reach is out of order. This type of error can happen with computers, too. To

test this, you need the node name of the computer you’re trying to reach. That information is in

the interfaces file. Look at the name of the server you’re trying to reach. Below that you

find an indented line that begins with “query…'. (If you don’t find that line; that’s the prob-

lem; and you’ll have to speak to your data administrator to get it fixed.) Just before the num-

ber that ends the indented line, you’ll see a name, in the example below, it “milano”. That’s

the name of the computer where the server is located.

#

MIPSDB1

 query tcp sun-ether milano 1040

We want to use that name to see if we can connect to the other machine. This has nothing to do

with database servers, we just want to see if our machine can reach the server machine. To

check the connection, we’ll use the network utility telnet. In your terminal window, type “tel-

net milano”:

% telnet milano
Trying 128.147.24.63...

Connected to milano.

Escape character is '^]'.

SunOS UNIX (milano)

login:

You should see the type of response in the example above. (Type <control-d> at this point to

exit from telnet.) If you don’t get this sort of response, you’re unable to reach the server’s

machine. At this point, you should contact your system administrator who will configure

your machine properly. Once that is done, try to connect to the server again using dbView.
18 — Installing dbView

Tutorial
 Tutorial

7 Introduction

dbView is a command line utility that allows you connect to a database server—currently a

Sybase database server—over a network and to execute database statements and retrieve data.

It can be used from a terminal, like a DEC VT100, or from a terminal emulation window. If

you’re in a windowing environment, dbView can be integrated with other applications to

some extent. For example, you can cut data from the dbView window and paste it into another

application.

This tutorial introduces dbView’s commands using simple examples. We begin with a quick

introduction that covers the topics:

1. Starting dbView

2. Connecting to a database server

3. Executing SQL commands and retrieving data from a database

4. Editing a SQL command

5. Exiting from dbView.

The introduction should take you about 15 minutes to complete. Once you’ve finished it, you

should be able to use dbView to accomplish useful working, providing you know the data-

base access language, SQL. (If you don’t know SQL, look at the bibliography at the end of this

document for some suggested reading.)

Following the introduction, we describe dbView’s command set. The commands are grouped

into the major topics:

• Connecting to a database server.

• Executing commands.

• Getting help for dbView commands.

• Saving commands and data to files.

• Using macros to encapsulate commands
Introduction — 19

Tutorial
• Accessing data dictionary information.

• Generating reports.

• Running script files that contain dbView and SQL commands.

• Reading error messages returned by dbView.

Once you’ve completed the tutorial, you can use the index to quickly locate references to spe-

cific commands. They are all listed under the major topic “commands”.

7.1 A Little More About dbView

Before we begin in earnest, there are just a few more things you need to know about dbView.

• dbView is a client process. It accesses a database server over a network. This means you

can use dbView from anywhere on a network as long as you’ve got the ability to make a

connection to the server in which you’re interested. (Of course, you must also have access

privileges to the database. If you don’t, contact your Database Administrator.)

• Currently, dbView supports Sybase and Illustra database servers.

• dbView currently runs in SUN (SUN OS and Solaris), HP, SGI, NeXT and DEC VMS envi-

ronments.

• Currently, dbView only supports English language command input.
20 — Introduction

Tutorial
8 Getting Started

In this section we’ll show you how to use dbView to execute and edit a database statement. In

later sections we’ll discuss the additional features of dbView; but for now we just want to

access a database, do some useful work and exit the program. When you’ve completed this

section, you’ll know the basics of database retrieval using dbView.

To run dbView, type dbView at your system prompt and hit the <return> key. (In this guide

we’ll use a percent sign “%” as the system prompt. The commands you’re required to type are

displayed in bold type.)

% dbView

When you start dbView, it responds by displaying version and copyright information. Follow-

ing immediately, it prompts you for four items: your database server login name, password,

the name of the server you want to connect to and the name of the database you want to enter

once the connection is made. You screen will look something like this—the items in bold type

are your responses:

dbView, version 1.4, (dblib, milib), 28 Nov, 1994

Copyright 1993, The Jet Propulsion Laboratory. All rights

reserved.

userName []: franklin

password:

server []: CATALOGDBS

database []: catalog

DBMS Type []: Sybase

1> ← this is the command prompt

If you’re using Illustra, the last line should be:

DBMS Type []: Illustra

We’ve used the login name of “franklin”. The password is not displayed for security reasons.

The name of the database server is “CATALOGDBS” and the database is “catalog”. Since

dbView supports multiple DBMS’, you also need to include the type of DBMS. Once we’ve

given dbView this information, it connects us to the database and displays its command

prompt—the line with the arrow pointing to it in the example above. If you see something dif-

ferent than this, like one or more error messages, refer to section 22 where frequently encoun-

tered errors are discussed.

Notice the square brackets, [], that appear at the end of each prompt except for “password” in

the example login. dbView saves your current input values and displays them in these square

brackets the next time you login. These are your default values for the prompts. You can

accept a default value by simply typing <return> following the prompt. When you type in a

new value, it becomes the default for the next session.
Getting Started — 21

Tutorial
Once you’re in dbView, type in a SQL command or the name of a Sybase stored procedure. To

get another line to continue a command, press the <return> key. Once you’ve entered your

command, press the <return> key once more and type the word “go” on a line by itself. “go”

is dbView terminator command. It signifies that your SQL command is complete and should

be executed. To execute the command, type <return> following “go”1.

For our first example, we’ll type in a SQL command that returns the names of all the planets in

the Solar System.2

Here’s the Sybase version:

1> select name from planets
2> go

name

Earth

Jupiter

Mars

Mercury

Neptune

Pluto

Saturn

Uranus

Venus

(9 row(s) affected)

For Illustra you need to end the SQL command with a semicolon, like this:

1> select name from planets; ← semicolon goes here

2> go

name

Earth

Jupiter

Mars

Mercury

Neptune

Pluto

Saturn

1 Some DBMS’s, Illustra for example, require that you terminate an SQL statement with a semicolon. In

that case include the semicolon as part of the SQL statement and then type “go”. The examples don’t

use the semicolon convention, so you should remember to add it if your DBMS requires it.

2 The example database objects used in the document can be found in the script file examples.sybase
or examples.illustra . To load them, connect to the target database and issue the command script

<path>/examples.sybase or <path>examples.illustra .
22 — Getting Started

Tutorial
Uranus

Venus

(9 row(s) affected)

So, what happened? First we typed in four lines that make up the SQL command. Then we

typed in “go” on a line of its own and pressed <return> one more time. dbView then executed

the command. The field names in the SELECT statement appears as the title of a column. The

values for the name field follow, separated from the field name by a row of dashes. Following

the data, dbView displays status information. It says that 2 rows were affected, which means

that 2 rows were returned. The word “affected” is used because sometimes we may be altering

the database. In that case we don’t get any rows returned, but we still “affect” some of them.

Once dbView displays the status information, it returns us to the command line. It prompts us

with a “1>” again, indicating that it’s ready to receive a new command.

If you make a mistake while typing in the command, try one of these options:

1. Cancel the command and start over by typing <control c>. Then type in the command

again.

1> select anme
2> from^C ← typed <control c> here
1> select name

2> from planets

5> go

2. Edit the command by typing the word edit on a command line of its own. Edit the com-

mand and return to dbView. Type “go” to execute the command once you’ve returned

from the editor. (Note: By default, the vi editor is used on Unix systems and edt on VMS

systems.)

1> select naem

2> from

3> edit

…correct and complete the command in your editor and then return to dbView’s com-

mand line.

1> select name
2> from planets
5>

…execute the command by typing “go” on line 5

8.1 Sybase System Stored Procedures

Next, we’ll execute the system stored procedure, sp_who. This procedure gives us the informa-

tion the database server has about our connection. (If you’re not familiar with stored proce-
Getting Started — 23

Tutorial
dures, refer to one of the Sybase references in the bibliography.) For our example, we follow

the stored procedure name with our login name, “franklin”. You should use your own login

name if you repeat the example:

1> sp_who franklin

2> go

(1 row(s) affected, return status = 0)

dbView has responded just as it did in the last example, only this time we used a stored proce-

dure instead of an SQL statement. Notice the final status line. It not only gives the rows

affected, it also includes status information. This is the value returned by the stored proce-

dure. If the value isn’t “0”, the stored procedure is signaling something other than normal ter-

mination. In those cases you should also receive a message along with the status information.

sp_who is just one of a set of system stored procedures supplied with every Sybase database

server1. The names of system stored procedures are always prefixed with “sp_”. Next, we’ll

execute the procedure sp_helpdb that returns a list of all database on the server you’re currently

connected to; but before we do that, we’ll change the format of the table so that the rows

returned are in list format instead of table format. (Set is a dbView command, and is unrelated

to Sybase. All dbView command execute immediately. You don’t need to—an shouldn’t—type

“go” following a dbView command.)

1> set format list

1> sp_helpdb

2> go

Row 1>

 name = catalog ← the name of a database

 db_size = 236 MB

 owner = sa

 dbid = 4

 created = Mar 11, 1993

 status = no options set

Row 2>

 name = master

 db_size = 5 MB

 owner = sa

 dbid = 1

spid status loginame hostname blk dbname cmd

---- -------- -------- -------- --- ------- -----------

5 running franklin friuli 0 catalog SELECT

1 For more information about Sybase system stored procedures, look at the references in the bibliography

that discuss Sybase.
24 — Getting Started

Tutorial
 created = Jan 01, 1900

 status = no options set

Row 3>

 name = model

 db_size = 2 MB

 owner = sa

 dbid = 3

 created = Jan 01, 1900

 status = no options set

Row 4>

 name = tempdb

 db_size = 40 MB

 owner = sa

 dbid = 2

 created = Mar 30, 1993

 status = select into/bulkcopy

(return status = 0)

The procedure returned the names of four databases. The databases, master , model and

tempdb are present on every Sybase database server, and are used by the server for adminis-

tration purposes. The other database, catalog , is the one we’re connected to, as we saw

when we executed the system stored procedure, sp_who.

To change the format so that we get results in tabular format once again, execute the dbView

command:

1> set format table

We could have moved to another database by executing the Sybase Transact-SQL1 command:

user <database>

Since this is a SQL command, we need to type “go” following it:

1> use master
2> go
Changed database context to 'master'.

8.2 Ending The dbView Session

You now know the basics of using dbView with one exception—you don’t know how to end a

1 Sybase’s implementation of SQL, which contains many extensions to the language, is called Transact-

SQL.
Getting Started — 25

Tutorial
session; but that’s easy. Just type exit as a new command.

1> exit

At this point, dbView exits and returns us to the system prompt.

8.3 What You’ve Learned

In this section we:

• Started dbView

• Connected to a database

• Executed SQL statements and stored procedures.

• Used the dbView set command.

• Exited the program.

There is one rule to remember from this section:

SQL commands—and stored procedures are SQL commands—are executed by fol-

lowing the command with the word “go” on a line by itself. dbView command—like

set—execute immediately once you press the <return> key.

So you’re 15 minutes are up and you now can use dbView to retrieve data from a database.

Congratulations! If you want to learn more about dbView’s capabilities, read on.
26 — Getting Started

Tutorial
9 Running And Exiting From dbView

Before running dbView, you must have a valid Sybase environment on your machine and you

must be able to access one or more Sybase database servers. For more information on the

Sybase environment, refer to the Installation Guide.

To run dbView, type the name of the program at your system prompt:

% dbView

dbView will first prompt you for database server connection information, which we cover in

the next section. If dbView encounters an error condition, you’ll receive one or more mes-

sages. For more information on error messages see "Some Common Login Errors" on page 138

and see "Error Messages" on page 136.

When you finished with dbView and want to exit, type exit as a new command (New com-

mands always begin with a prompt of “1>”. To reset the command line to “1>”, type reset.) In

the following example, we’ll reset the command line and exit.

3> reset

1> exit

The full syntax for the exit command is

exit [noSave]

If you include the “noSave” option, dbView will not save your current configuration. Use this

options when you’ve made changes to the configuration that you don’t want to take effect the

next time you run dbView; for example:

1> exit noSave

(The significance of this form of the exit command will be clearer once we have introduced

more of dbView commands.)
Running And Exiting From dbView — 27

Tutorial
10 Connecting To A Database Server

In the previous section, “Getting Started” we made an initial connection to a database server.

Once we’ve initially supplied dbView with login information, these values are saved and used

as the default connection values the next time we connect to a server. Default values appear in

square brackets [] following the prompt. To accept a default value, just type <return> at the

prompt. Otherwise, enter the new value. Any new values supplied immediately become the

new default.

Suppose we are now running dbView for the second time and we want to use the same con-

nection information. The only thing we need supply is the password value:

% dbView

dbView, version 1.0, May 15, 1993

Copyright 1993, The Jet Propulsion Laboratory. All rights

reserved.

userName [franklin]: <return>

password: <password><return>

server [CATALOGDBS]: <return>

database [catalog]: <return>

DBMS Type [Sybase]: <return>

1>

10.1 The Connect Retry Prompt

If an error occurs while dbView attempts to make a connection, you will receive an error mes-

sage. Following the error message you will see the line:

 Try again? { y | n } [y]:

dbView is asking if you want to try to make the connection again. If you press the <return>

key, you accept the default value, which is “y” (yes). (A default value in dbView always

appears in square brackets. The values within curly braces show you the possible response

values.) Accepting the default or typing “y” will get the connection prompt sequence again:

 Try again? { y | n } [y]: <return>

What happens if you type “n” (no)? dbView does not exit; rather it leaves you at its command

prompt because there are a couple of things you may want to do within dbView even though

you’re not connected to a database server.
28 — Connecting To A Database Server

Tutorial
10.1.1 Increasing The Time-out Period

You may have “timed-out”. That is, you may be on a busy network. By default, dbView waits

for 60 seconds for a response from the server. If it doesn’t receive a response, it assumes it can

not make a connection. To make dbView wait for a longer period, you’ll have to increase the

time-out value, but you can only do that from within dbView, so you’re left at the command

prompt where this can be done.

To increase the time-out period, use the command:

set timeout <number of seconds>

For example, let’s increase the time-out period to 180 seconds:

1> set timeout 180

The command takes effect as soon as you press the <return> key. The next time you connect,

dbView will wait 180 seconds. (As we’ll see in a moment, you don’t have to exit from dbView

to re-connect.)

10.1.2 The Show Server Command1

If you were unable to connect to a server, it may be that you have used the wrong database

server. Before attempting to connect again, use the show server command to get the list of serv-

ers that your copy of dbView can recognizes. For example:

1> show server

 - CATALOGDBS

 - CDB

 - PDSYBASECN

 - SYSTEM10

You should used one of the names in the list as the server name when you make a dbView

connection to a database server.

You don’t have to be connected to a server to execute the show server command; the informa-

tion is derived from your local copy of the Sybase interfaces file which was mentioned in

the introduction.

10.1.3 Can’t Find The Interfaces File

Sometimes dbView can not connect to a server because it can’t find a copy of the interfaces

file. In this case, you will receive an error message at connection time:

userName [franklin]:

password:

server [CATALOGDBS]:

1 This command will support Illustra in the next version of dbView.
Connecting To A Database Server — 29

Tutorial
database [catalog]:

DBMS Type [Sybase]:

MDMS DBLIB MSGFAILED milano::General Delivery Fri Apr 23

11:35:39 1993

MsgNo: 20015, Svr: 3

Could not open interface file.

MDMS PROGRAM ERROR milano::dbView Fri Apr 23 11:35:39 1993

dbopen error for SQL command: CATALOGDBS server connection

 Try again? { y | n } [y]: n

Executing the show server will also tell you if you can access the interfaces file. If dbView can’t

find it, you’ll see an error message:

1> show server

MDMS PROGRAM ERROR milano::dbView Fri Apr 23 11:35:51 1993

Could not open interfaces file - /usr/sybase/interfaces.

If you see this sort of messages, then your Sybase environment is not set-up correctly—see the

Installation Guide for help.

10.1.4 Getting The List Of Databases And Accessing A Database

At this point, you might wonder if dbView has a command to show database. The answer is

no, because the is a Sybase stored procedure that does that. Just type the command

1> sp_helpdb
2> go

and you’ll retrieve information on all the databases on the server to which you’re connected.

There are other useful Sybase stored procedures. For a complete description of these, see the

Sybase Command Reference manual.

Once we’re connected to a server, we can access a particular database using the Sybase Trans-

act-SQL command

user <database name>

For example, to access the catalog database, we would execute the command:

1> use catalog
2> go
Changed database context to 'catalog'.
30 — Connecting To A Database Server

Tutorial
(Note: Your Database Administrator must grant you the privilege to access a database before

this command will actually allow you to enter the database.)

If you don’t have the privilege to access a database, you’ll get an error message that looks like

this:

1> use payroll
2> go

MDMS DBS WARNING milano::dbView Thu Mar 17 07:32:11 1994

(Db: jar, MsgNo: 916, Svr: 14, St: 1)

Server user id 3 is not a valid user in database 'payroll'

Changed database context to 'catalog'.

10.1.5 Exiting After Connection Failure

Since dbView always leaves you at the command prompt following a connection attempt, you

must use the exit command to terminate the session:

1> exit

The exit command is only recognized as a new command, i.e., the command line number is 1.

If you’re not at command line 1, type <control-c>—the “control” and “c” keys pressed simul-

taneously. That will cancel any current command and return you to the point at which you can

exit.

10.1.6 The Connect command

You don’t have to exit dbView to connect to another server or to reconnect to one after a con-

nection has been dropped for some reason. While in dbView, you make a database connection

with the connect command. While your in dbView you can make changes to its environment as

we’ll see in subsequent sections. When you use the connect command, you maintain your

environment across database servers. For example, suppose we are connected to the server

CATALOGDBS, and we now want to get some data from the server PSYBASECN as the user

“anonymous”. (If the DBMS type were different, we would enter its name well.) We execute

the connect command and change the necessary default values:

1> connect

userName [franklin]: anonymous<return>

password: <password><return>

server [CATALOGDBS]: PSYBASECN<return>

database [catalog]: <return>

DBMS Type [Sybase]: <return>

1>
Connecting To A Database Server — 31

Tutorial
We’re now connected to the database server PSYBASECN as “anonymous”. Notice that we

also kept the default database name, “catalog”.

10.1.7 Using A Default Database

dbView always prompts you for a database name. Since Sybase always places you in a default

database, you may want to skip this and just let the database server use the default it has for

you. To use the default database defined by the database server, supply a question mark as your

database name in dbView, like so:

1> connect

userName [franklin]: <return>

password: <password><return>

server [CATALOGDBS]: <return>

database [catalog]: ?<return>

DBMS Type [Sybase]: <return>

The question mark indicated that you’re not specifying the database. Instead, the database

server should select your default.
32 — Connecting To A Database Server

Tutorial
11 Connecting To Multiple DBMS’s Simultaneously

If you only use one type of DBMS and you only plan to make one connection to a database at

a time, you can skip this section.

11.1 Defining Multiple Connections

dbView can maintain multiple simultaneous connections, and different connections can be

made to different types of DBMS’s.1 To do this we need a way to refer to different connections.

dbView used handles to do this. A handle is a name you supply that is associated with the set

of information you supply when you make a connection. The full syntax for the connect com-

mand is:

connect [<user supplied handle> | default]

An example will explain how the command is used. Lets make an initial connection to

dbView; the one you make when you first invoke the program. Then lets make two more con-

nections, one to mapping data another to telemetry data.

First the initial connection.

dbView, version 1.4, (dblib, milib), 28 Nov 1994

Copyright 1993, The Jet Propulsion Laboratory. All rights

reserved.

User name []: franklin

password:

server []: CATALOGDBS

database []: catalog

DBMS Type []: Sybase

Now the two additional connections. The initial connection is still maintained because we

supply handles with the two new connections so dbView can keep track of all three.

1> connect mapping

User name [franklin]:

password:

server [CATALOGDBS]: Illustra1

database [catalog]: planetMaps

DBMS Type [Sybase]: Illustra

1> connect telemetry

User name [franklin]: madison

password:

1 This capability is Operating System dependent. Currently dbView supports Sybase connections on Sun

OS, Sun Solaris 2, HP-UX, SGI, DEC VAX VMS and Open VMS, and NeXTStep operating systems.

dbView also supports Illustra on Sun Solaris 2 and NeXTStep operating systems.
Connecting To Multiple DBMS’s Simultaneously — 33

Tutorial
server [CATALOGDBS]: TELEMCAT

database [catalog]: telem

DBMS Type [Sybase]:

Let’s make some observations on what we’ve done so far.

1. Whenever we make a new connection, that becomes the current connection. (We’ll show

you how to change connections in a moment.)

2. The default paremeters for a new connection command always come from your initial con-

nection. If you supply a new parameter for the handle, the parameter becomes the default

for the new handle.

3. You only have to change parameters that will be new for the handle you’re defining.

Notice in the third connection how we changed the user name but did not supply a DBMS

Type.

4. If you look at the syntax for the connect command again, you see that it includes a special

handle named default. That’s the handle associated with you initial connection. We’ll see

how its used in the next section.

5. There’s an advantage to using handles if you have many DBMS’s to connect to, or even if

you have to use different names for different privileges within a single database server.

And that advantage is: there’s less for you to remember. Instead of knowing five parame-

ters for a connection, you only need to remember one—the handle’s name, which you

define. And, once defined, dbView remembers your handles. They’re available in subse-

quent sessions, so the advantage remains.

11.2 Using Connection Handles

Now that we’ve got three connections—see the example in the last section—we can change

connection with the handles. To use a connection you’ve defined, just include the handle’s

name with the connect command. For example:

1> connect mapping

Since we’ve got this connection defined, dbView just changes the connection; it doesn’t re-

prompt you for new connection parameters. We’re now connection to “mapping”. Any com-

mands we send to a database server go to the one represented by that handle.

Let’s change connections a couple of more times.

1> connect telemetry

1> connect default

The last connection takes us to our initial connection—the one we made when we first entered

dbView. Why do we need the special handle “default” in this case; why can’t we just say con-
nect? For people using sequential connections, dbView must provide a way to disconnect and
34 — Connecting To Multiple DBMS’s Simultaneously

Tutorial
connect anew to another database server. If you just typed connect, that’s what will happen.

You’re connection is dropped and you’re prompted for new connection information. In this

way, if you’re not using handles, dbView hides the entire issue from you. If you are using han-

dles, then you always provide a handle, even in the default case. Both methods are consistent.

With multiple connections, you can forget were you are, so dbView provides a command for

finding out that information. The command is:

show handle

Let’s connect to “mapping” and try it.

1> connect mapping

1> show handle

 default connected

 mapping connected using

 telemetry connected

We’ve got three handles defined and we’re connected to all of them. We’re currently using the

“mapping” handle. If we now connect to the “telemetry” handle, we see this:

1> connect telemetry

1> show handle

 default connected

 mapping connected

 telemetry connected using

We can drop a connection with the command:

disconnect <handle name>

We’ll drop the connection associated with the “telemetry” handle and then use show handle
again.

1> disconnect telemetry

1> show handle

 default connected using

 mapping connected

 telemetry

We’re no longer connected to the telemetry handle. When we disconnect from a handle we’re

using, dbView will return the default conection whether or not its connected.

Notice that the “telemetry” handle is still defined, it’s just not connect any more, so we can

still use it in the future to make a new connection. When we reconnect to a defined handle,

we’ll be prompted by the connect command again:
Connecting To Multiple DBMS’s Simultaneously — 35

Tutorial
1> connect telemetry

User name [madison]:

password:

server [TELEMCAT]:

database [telem]:

DBMS Type [Sybase]:

Notice that the handle maintains its default values. You could change them when prompted,

but all that’s necessary is that you enter your password again and press <return> for any

default parameters you want to accept.

When you exit dbView, all of your defined handles are written into the .dbView file. The next

time you run dbView it will read the contents the .dbView file, so you can connect with your

defined handles immediately—there’s no need to define them in each dbView session.

When you first use a handle in a new dbView session, you must enter the password, so

dbView prompts you for the handle’s paramters. If you want to redefine one or more

paramters for a handle that’s connected, just disconnect and the reconnect:

1> connect telemetry ← connected, so no prompt

1> disconnect telemetry

1> connect telemetry ← not connected, so we get prompted

User name [madison]: hamilton

password:

server [TELEMCAT]:

database [telem]:

DBMS Type [Sybase]:

Now we’ve change the handle to connect as “hamilton” instead of “madison”.

If you just enter the command “connect”, you’re always prompted for parameters which are

applied to the default handle. This is done for the benefit of people not using handles. In their

case, they have no need to know anything about handles, so dbView gives them sequential

access to connections. Issuing the connect command without a handle name, drops the current

default connection, prompts you for new connection parameters and then makes a new con-

nection.

You can also remove a handle completely so it no longer appears in your dbView session. You

do this using the command:

remove handle <user supplied handle>

Notice that it only says user supplied handle; you can’t remove the “default” handle. But, you

can redefine it by simply issuing the connect command without a handle name as explained

above.

dbView won’t let you remove a handle that it’s using for a connection—it would loose track of
36 — Connecting To Multiple DBMS’s Simultaneously

Tutorial
the connection in that case, so you must first disconnect. Here’s an example:

1> show handle

 default connected using

 mapping connected

 telemetry connected

1> remove handle telemetry ← won’t work, we’re connected

 Cannot remove connected handle. Disconnect and try

 again.

1> disconnect telemetry

1> remove handle telemetry

1> show handle

 default connected using

 mapping connected

The first time we tried to remove the “telemetry” handle we were using it, so dbView issued

an error message and kept the connection. Once we disconnected, we were able to remove the

handle.

11.3 Handles And The Password Server1

The password server stores database passwords. To use it you must be registered with a Ker-

beros and a password server that work together to supply passwords and you must currently

have a valid Kerberos ticket—which you get using kinit. (If you’re not sure about whether or

not you have a password server, ask you DBA. If you’re not using one, skip this section.)

If you are using a password server and you’re a valid user in that server, you can connect

immediately without supplying a password with handles. When you define a handle, don’t

supply a password; you’ll be connected using the password from the password server. If you

enter a new dbView session and your handles are already defined, you can use them immedi-

ately, dbView won’t prompt for any information.

Before you try this, you’ll have to make one addition setting. By default, dbView always

prompts, so you have to tell it not to. To do this you use the following command:2

set promptOnConnect {on | off}

By default it is set to “on”. To work with the password server, you want to set if off, so dbView

suppresses prompts:

1 Not currently supported on VAX and NeXTStep.

2 This is just one of dbView’s set command s. The set commands are introduced later on, but this is the

logical place to describe the promptOnConnect setting, so we introduce it early.
Connecting To Multiple DBMS’s Simultaneously — 37

Tutorial
1> set promptOnConnect off

Now you won’t be prompted. If you did want to be prompted, turn on the setting.

11.4 Handles And dbView’s Batch Mode

Handles and the password server can be used with a special dbView batch mode. Batch mode is

discussed in its own section, so, for now, we’ll just tell you what it does. In batch mode, you

supply the name of a script file on dbView’s command line. dbView executes the commands in

the script file and never enters its interactive mode—the mode we’ve been in all along. For this

to be possible, dbView needs a way to get passwords associated with the connections made in

the script file. It goes to the password server to get them.

Later you’ll see that batch mode has many uses. Suppose, for example, that your script file

contains a set of report commands that generate reports from a set of database servers that are

place throughout your enterprise and that you want to run these reports nightly at three in the

morning. The results of the reports should be emailed to a group of people once the reports

are generated. Having handles and the password server makes this possible as you’ll discover

later on.
38 — Connecting To Multiple DBMS’s Simultaneously

Tutorial
12 Executing A Command

Once connected to a database server, dbView waits at its command prompt for input from

you. You can execute two types of commands within dbView: dbView commands and SQL

commands. All dbView commands are entered on a single line and are executed as soon as

you press the return key. SQL commands can extend over several lines, so dbView needs a

way to know that you’ve completed the command. The special terminator “go”, placed on a

line by itself, signals the end of a SQL command. (Remember that Sybase stored procedures

are the same as SQL commands from dbView’s point of view.)

Show server is an example of a dbView command. As soon as you type it in and press the

return key, the list of servers is displayed.

1> show server

 - CATALOGDBS

 - CDB

 - PDSYBASECN

 - SYSTEM10

The next example shows an SQL command entered on 3 lines. The fourth line has the “go” ter-

minator. Notice the results are retrieved by dbView as soon as it recognizes the “go” termina-

tor.

1> select mission, scId
2> from missions
3> order by mission
4> go ← this is command terminator

mission scId

--------------- -----------

Cassini 72

GLL 35

MO 91

VGR 0

(4 row(s) affected)

In the next example, we show a stored procedure command. Even though it can be entered on

a single line, it must be followed by the “go” terminator because it’s an SQL command.

1> showMissions

2> go

 MISSION INFORMATION

mission scId objective

--------------- ----------- ---------------

Cassini 72 Saturn

GLL 35 Jupiter
Executing A Command — 39

Tutorial
MO 91 Mars

VGR 0 NULL

(4 row(s) affected, return status = 0)

1> ← dbView’s signal for the next command

Here’s the underlying rule: Any command string dbView does not recognized as one of its

own, is assumed to be the beginning of an database command, so dbView keeps accepting

input lines until you terminate the command.

12.1 Cancelling A Command

If you make a mistake while entering a command, you can cancel it and start over.

12.1.1 Cancelling A Command Using <control-c>

When you are in the middle of a command, typing <control-c> (the control key and the c key

pressed simultaneously) cancels the command. dbView then prompts with command line 1

again, signalling that you can enter a new command. In the following example, the word

“select” is miss-spelled as “sedect”. When we notice this, we type <control-c> and the com-

mand is cancelled. We then type retype the command correctly. (Use of the edit command is

another option for correcting a command, see "Editing Commands" on page 41.)

1> sedect mission

2> from^C

1> select mission

2> from missions

3> go

12.1.2 Cancelling A Database Command Using <control-c>

You can also use <control-c> to interrupt a database command that is in the processing of exe-

cuting. This is most often used to terminate query results before all of the rows are returned.

As dbView displays the rows for a query, type <control-c>. As soon as the current row buffer

is emptied, the query is terminated and you’re returned to the command line prompt.1

12.1.3 The reset Command

You can also cancel a dbView command by typing reset on the next command line, for exam-

ple:

1> select mission, scId

1 For some operating systems, most notably DEC’s VMS, you will have to press the <return> key follow-

ing <control-c> before the cancel will take effect. This is the nature of the operating system, not dbView.
40 — Executing A Command

Tutorial
2> reset

1>

Reset only cancels a command in dbView’s command buffer. It can not be used to terminate a

database command that is in the process of executing.

Why does dbView have the reset command when <control-c> works just fine to cancel a com-

mand? In scripts—sets of dbview command that can be executed from a file—the reset com-

mand is used to end a comment. Text entered in the command buffer is normally a command,

but in a script file it can be treated as a comment. Just type in whatever you want and then on

the next line use the reset command. Follow that with the actual command. Here’s a short

example, see "The Script Command" on page 122, for more details.

1> The following SQL statement will bring back information

2> from the "planets" table which contains the names and

3> other information about the planets in the Solar System.

4> reset ← we don’t want the comment executed

1> select * from planets

2> go

12.2 Editing Commands

In the previous section, we saw how to cancel a command to correct a mistake in an SQL state-

ment. There is a better way to do this—use your editor to make the correction and then return

to dbView. That way you don’t have to type in the entire command again.

To use the editor, type in the edit command on a new command line, like so:

1> sedect mission

2> edit

... command corrected and completed in the editor

1> select mission, scId

2> from missions

3> order by mission

4>

Notice that when dbView returns from the editor it leaves you on a new command line. You

can type “go” immediately to execute the command, or you can add more lines to the com-

mand.

dbView defines default editors: vi for Unix systems and edt for VMS, but you can change the

default using the set editor command. The syntax is:

set editor <editor name>
Executing A Command — 41

Tutorial
For example, if you prefer to use emacs, type:

1> set editor emacs

dbView saves this setting, and will continue to use it in the current session and all subsequent

sessions until you set it again.

12.3 When dbView Encounters An Error In An SQL Command

If you execute a command that contains errors, dbView returns one or more messages. For

example, if you type a query with the word select miss-spelled:

1> sedect mission

2> from missions

3> order by mission

2> go

you get the following error messages back, (see "What’s In An Error Message?" on page 136, for

a discussion on how to interpret error messages):

MDM DBS WARNING milano::dbView Fri Nov 13 12:54:20 1992

(Db: catalog, MsgNo: 156, Svr: 15, St: 1)

Incorrect syntax near the keyword 'from'.

If you receive one or more error messages, correct the error in the editor and execute the com-

mand again.

12.4 The Set Command

We’ve mentioned the dbView set in passing several times. The set command sets a dbView

parameter that effects dbView’s environment in some way. The syntax for the set command is:

set <parameter> <value>

We can see all of the set commands using the show set command.

1> show set

 - defaultMacroFile = <not defined>

 - displayRows = on

 - displayScriptCommands = on

 - doublePrecision = 12

 - editor = vi

 - endField = \t

 - endRow = \n

 - feedback = off

 - format = table

 - header = on

 - history = 20
42 — Executing A Command

Tutorial
 - mailReport = off

 - page = 0

 - printReport = off

 - promptOnConnect = on

 - reals = f

 - singlePrecision = 6

 - spaces = 2

 - timer = off

 - timeout = 60

 - verbose = off

The syntax for the command is:

show set [<set command parameter>]

As we’ve just seen, if you don’t specify a set command parameter, dbView lists the values of

all of the set commands.

When you supply a set parameter name with the show set command, dbView returns the val-

ues for that parameter alone.

1> show set timer

 - time = on

1> show set format

 - format = table

The show set command doesn’t tell you the significance of a particular command nor does it

tell you what values a command will accept. To get that information, use the help command,

which we describe later on.

12.4.1 Set Command Definitions

We’ll discuss how and where you’d use set commands further along in this document. In this

section we just given their definitions so you can get an idea of what they do. We used

dbView’ help command to get this information. You could do the same on-line by typing help
set <command>.

set defaultMacroFile <file name> [<file name> ...]
The full name of the file - including any directory specification -

that contains macro definitions that should be read in when dbView is

run. More that one file may be placed on this list.

Default: none

set displayRows { on | off }
If set to "off", rows are not returned when a query is executed. Most

often used to determine the execution time of a query minus the time
Executing A Command — 43

Tutorial
for screen I/O.

Default: on

set displayScriptCommands { on | off }

If set to "off", commands executed from script files are not

written to the screen. Useful for applications where the user

must respond to prompts, or needs a clear view of output.

Default: on

set doublePrecision <integer>
The number of digits displayed for a double precision floating point

number - 8 bytes in length on most machines.

Default: 12

Range: 1,...,18

set editor <editor name>
The name of the editor dbView invokes when you type the edit command.

Default: vi (Unix), edt (VMS)

set endField <string>
The set of symbols that separate fields in rows of data returned by

the export table format.

Default: tab <\t>

set endRow <string>
The set of symbols that terminate a row, or record, when data is

returned by the export table format.

Default: newline <\n>

set feedback { on | off }
If set to "on", dots will be displayed on the screen while waiting

for the results of each query.

Default: off

set format { table | list | export }
The display format for data returned by a database query.

Default: table

set header { on | off }
If set to "off", the columns names and status line that normally

appear as part of a information returned by a query are suppressed.

Default: on

set history <list size>
The number of commands kept in the history list.

Default: 10

Range: 1,...,100
44 — Executing A Command

Tutorial
set mailReport { on | off }
If a report has a list of eMail addresses associated with it, mail is

not sent is the value of mailReport is "off".

Default: on

set page <number of display lines>
The number of lines in a page full of display data before dbView will

stop and wait for you to signal for more. The signal for another page

of data is <return>. If the number of display lines is set to 0,

dbView understands this to mean an unlimited number of rows should be

returned on a page.

Default: 10000

Range: 0,,10000

set printReport { on | off }
If a report contains a command to send the report to a printer, you

can suppress that command by setting printReport of a values of "off".

Default: on

set promptOnConnect { on | off }
If set to “on”, the user is prompted for connection information when using pre-

defined handles. If set to “off” no prompt is made.

Default: on

set reals { f | e | E | g | G }
The format for real and floating point numbers. "f" is decimal format.

"e" and "E" are scientific notation format. And "g" and "G" are mixed,

depending on the magnitude of the value. The case of the letters "e"

and "g" will be reflected in the scientific notation display. For

example:

set reals e

real float

------------- -------------------

 1.234456e+03 1.234567890000e+07

set reals E

real float

------------- -------------------

 1.234456E+03 1.234567890000E+07

The number of digits displayed is controlled by the parameters

singlePrecision and doublePrecision.

Default: f

set singlePrecision <integer>
The number of digits displayed for a single precision floating point

numbers - 4 bytes in length on most machines.
Executing A Command — 45

Tutorial
Default: 6

Range: 1,...,10

set spaces <integer>
The number of spaces between columns of data returned by a database query.

Default: 2

Range: 1,...,80

set timer { on | off }
When set "on", database commands return the time it took to execute

the command and to display any data returned.

Default: off

set timeout <integer>
The number of seconds dbView waits while attempting to connect to a

database server.

Default: 60

Range: 0,...,32767

set verbose { on | off }
When set to "on", causes the commands show db and show macro to

display additional information. Also, if set to If set to "on",

causes any comment associated with a macro to be displayed before

the macro is executed.

12.5 Saving dbView’s Environment

When you exit dbView, your current environment is saved to a file. For Unix systems the files

is named .dbview, and for VMS systems .dbview.<version number>. (dbView purges the

.dbview file on VMS after writing a new one.) For both types of systems, the file is located in

you logon—or home— directory.

The file contains all of the set command values plus you database server connection parame-

ters. The next time you run dbView, the values in the .dbview file are read and used as your

current environment.

If you’ve made changes to the set commands in a dbView session; and you don’t want those

changes saved, you can use a special form of the exit command:

1> exit nosave

dbView then exits without writing-out a new .dbview file.

12.6 Timing Commands

You can measure the length of time it takes to completely execute an SQL command, including

the amount of time to display any rows returned, using the set timer command. The following

example shows how the timer is set. Following the execution of each command sent to the
46 — Executing A Command

Tutorial
database server, the time is reported along with the number of rows returned, if there were

any:

1> set timer on

1> select mission, scId

2> from missions

3> order by mission

4> go

mission scId

--------------- -----------

Cassini 72

GLL 35

MO 91

VGR 0

(4 row(s) affected)

 SQL statement took 0.04 seconds to execute.

1> set timer off

1>

Times are recorded to a hundreth of a second.

Reported times include the amount of time it took to return the data to your screen. If you

want the time minus the screen I/O, use the set displayRows command to turn off screen I/O.

(Later we’ll see other instances where we might not want query results displayed.)

1> set displayRows off

1> select mission, scId

2> from missions

3> order by mission

4> go

(4 row(s) affected)

 SQL statement took 0.02 seconds to execute.

Without the screen I/O, the query took half as long to complete. Turn the display back on with

the command:

1> set displayRows on
Executing A Command — 47

Tutorial
12.7 Altering The Database Table Display Format

Data returned from a database server to dbView can be formatted in one of three ways: table,

list or export. The syntax for the command that sets the current format is:

set format { table | list | export }

The curly braces enclose a list of options, one of which must be chosen. The vertical line means

“or”, i.e., “table” or “list” or “export”. When you first begin using dbView, the default format

is “table”.

12.7.1 Table Format

Here’s an example of table formatted data:

1> select mission, scId

2> from missions

3> order by mission

4> go

mission scId

--------------- -----------

Cassini 72

GLL 35

MO 91

VGR 0

(4 row(s) affected)

In table format you can adjust the number of spaces between each column with the set spaces
command; for example:

1> set spaces 6

1> select mission, scId

2> from missions

3> order by mission

4> go

mission scId

--------------- -----------

Cassini 72

GLL 35

MO 91

VGR 0

(4 row(s) affected)
48 — Executing A Command

Tutorial
12.7.2 List Format

Sometimes the rows in a table are so long that the data wraps one or more lines on your

screen. In the next example, we add some fields to our last query that cause this to occur.

1> select mission, scId, objective, description

2> from missions

3> go

mission scId objective description

------------------------------ ----------- ------------------

------------ ---

Cassini 72 Saturn The Cassini Mission to

Saturn

GLL 35 Jupiter The Galileo Mission

to Jupiter

MO 91 Mars The Mars Observer Mis-

sion

VGR 0 NULL The Voyager Mission to

the outer solar system

(4 row(s) affected)

If you find this difficult to read, you may want to try the list format:

1> set format list

1> last

1> select mission, scId, objective, description
Executing A Command — 49

Tutorial
2> from missions

3> go

Row 1>

 mission = Cassini

 scId = 72

 objective = Saturn

 description = The Cassini Mission to Saturn

Row 2>

 mission = GLL

 scId = 35

 objective = Jupiter

 description = The Galileo Mission to Jupiter

Row 3>

 mission = MO

 scId = 91

 objective = Mars

 description = The Mars Observer Mission

Row 4>

 mission = VGR

 scId = 0

 objective = NULL

 description = The Voyager Mission to the outer solar

system

(4 row(s) affected)

For this query, list format is a more readable format. Notice that each row is numbered and

each column value is proceeded by its name. (Also, notice the use of the last command to

recover the database command we had previously typed in.)

List format works best when a few rows are returned. If many rows are returned, the output

will take up many of lines on your screen.

12.7.3 Export Format

Export format is used to create a data set that will be exported to another program, like a

spread sheet, word processor or database import program.

In export format, data comes back in rows like it does in table format, but the fields are not

aligned. Instead a field delimiter is placed between each field’s value. Also, lines are termi-

nated with a row delimiter character. Programs that import data often require this format. For

example, Sybase’s data import program, bcp—bulk copy—imports data separated by delimit-

ers. The bcp defaults are tabs between fields and newlines between rows. These are the default
50 — Executing A Command

Tutorial
values used by dbView.

In the next example we return data in export format. We use a comma—defined with the set
endField command—as the field delimiter so that the delimiter can be more easily seen:

1> set format export

1> set endField ,

1> select mission, scId

2> from missions

3> order by mission

4> go

mission,scId

Cassini,71

GLL,31

MO,95

VGR,0

(4 row(s) affected)

Later we’ll describe how this data set can be saved to a file where it can be read by another

program.

As we’ve mentioned, the default field delimiter is the tab character and the default row delim-

iter is the newline character. You redefine these values using the commands:

set endField <character string>

set endRow <character string>

For example:

1> set endField ,

1> set endRow \r

The “\r” is a special representation of the ASCII “carriage return” character. Both set endField
and set endRow commands accept the special characters listed below:

\b back space

\f form feed

\n new line

\r carriage return

\s white space

\t horizontal tab

\v vertical tab
Executing A Command — 51

Tutorial
\\ back slash

\000 octal number

If you want several blanks between each field, use the “white space” character. The following

command would put four blanks between each field. (Of course, for spaces, you would be bet-

ter off just using the set spaces command.) Since a row delimiter follows the last field, there

would be no blanks following the last field:

1> set fieldDelimiter \s\s\s\s

12.7.4 Copy And Pasting Exported Data

If you’re using dbView in a windowing environment, you can copy and paste results between

windows. In fact, that’s how most of the examples in this document were created. In the next

example, we produce some output that is pasted into a table in a page layout program—we’re

using Frame Maker for the example. The steps used are:

1. Set the format to “export”, the endField to “,” and the endRow to “\n”.

1> set format export

1> set endField ,

1> set endRow \n

2. Execute the SQL statement.

1> select mission, scId, objective, description

2> from missions

3> order by mission

4> go

mission,scId,objective,description

Cassini,72,Saturn,The Cassini Mission to Saturn

GLL,35,Jupiter,The Galileo Mission to Jupiter

MO,91,Mars,The Mars Observer Mission

VGR,0,NULL,The Voyager Mission to the outer solar system

(4 row(s) affected)

3. Select and copy the data to the paste buffer from dbView’s terminal window and then

paste it into the Frame Maker document—or some other word processing program. In

Frame Maker, we then use the command “Convert to Table…” to produce the following
52 — Executing A Command

Tutorial
table from the export format data:

You should begin to see the possibilities of export format.

12.8 Displaying Table Header And Footer Information

When using table or export format, header and footer information is normally included. The

header consists of a row of field names above the data, separated from the data by dashed

lines. The footer contains the status line returned following the completion of an SQL state-

ment. You can turn off the display of header and footer information using the command:

set header {on | off}

This command is particularly useful when using the export format to produce a data file that

will be imported by a spreadsheet or database loading program because they normally only

want to accept the data to be loaded. We can repeat one of our previous examples with the

headers and footers suppressed:

1> set header off

1> set format export

1> select mission, scId

2> from missions

3> go

Cassini,72

GLL,35

MO,91

VGR,0

12.9 The Page command

When data is returned to you it will scroll down the screen until a page is full. A page is

defined as the number of lines of text displayed, or the number of rows returned from a data-

base query. By default the number of lines per page is 10,000. If you find lines are scrolling

mission scId objective description

Cassini 72 Saturn The Cassini Mission to Saturn

GLL 35 Jupiter The Galileo Mission to Jupiter

MO 91 Mars The Mars Observer Mission

VGR 0 NULL The Voyager Mission to the

outer solar system

Table 1: Mission Data
Executing A Command — 53

Tutorial
past your screen before you can view them, set the page size to something smaller, 24 for

example.

1> set page 24

After this setting, 24 lines are displayed and then dbView stops writing output to your screen.

To get the next page of data, press the <return> key.

Note: If the database is returning a large number of rows and you don’t want to page through

the rest of data, cancel the query using <control-c>; you’ll be returned to the command line

prompt once the query is cancelled. (When cancelling on a page break, you’ll have to press the

<return> key following <control-c> to get back to the prompt.)

The syntax for the set page command is:

set page [number of lines]

where the number of line or rows displayed per page can be between 1 and 10,000. The set
page command also takes the special value of 0 which set the page size to its maximum value.

1> set page 0

12.10 Real Number Formats

Sybase has two types of floating point numbers. One type is called real and uses 4 bytes to

store the number internally. The second type is called float and uses 8 bytes to store the num-

ber internally. In dbView these numbers are referred to as single and double precision floating

point numbers.

You can set the precision of single and double precision numbers independently using the

commands:

set singlePrecision <digits>

set doublePrecision <digits>

By default, single precision numbers have a precision of 6 digits and double precision num-

bers 12 digits. The interpretation of precision depends on the real number format chosen. The

command to set this real number format is:

set reals { f | e |E | g | G }

12.10.1 The f Format

The single and double precision floating point numbers are converted to decimal notation in

the style “[-]ddd.ddd” where the number of digits after the decimal point is equal to the pre-

cision specification.

In the following example the field lgtYrsFromSun is a double precision number and the field
54 — Executing A Command

Tutorial
hrsPerRotation is a single precision number.

1> select number, name, lgtYrsFromSun, hrsPerRotation

2> from planets

3> order by number

4> go

Now we change the precision and run the command again.

1> set singlePrecision 3

1> set doublePrecision 5

1> select number, name, lgtYrsFromSun, hrsPerRotation

2> from planets

3> order by number

4> go

number name lgtYrsFromSun hrsPerRotation

------ ---------- ----------------- --------------

1 Mercury 0.000006307862 211.283997

2 Venus 0.000011422344 NULL

3 Earth 0.000015854896 24.000000

4 Mars 0.000024208551 24.664000

5 Jupiter 0.000082343170 10.021000

6 Saturn 0.000151047719 10.273000

7 Uranus 0.000303459300 10.801000

8 Neptune 0.000475646880 15.898000

9 Pluto 0.000662567170 NULL

number name lgtYrsFromSun hrsPerRotation

------ ---------- ------------------- --------------

1 Mercury 0.00001 211.284

2 Venus 0.00001 NULL

3 Earth 0.00002 24.000

4 Mars 0.00002 24.664

5 Jupiter 0.00008 10.021

6 Saturn 0.00015 10.273

7 Uranus 0.00030 10.801
Executing A Command — 55

Tutorial
12.10.2 The E or e Format

The single and double precision floating point numbers are converted in the style

“[-]d.ddde±ddd”, where there is one digit before the decimal point and the number of digits

after it is equal to the precision. The “E” format code will produce a number with “E” instead

of “e” introducing the exponent. The exponent always contains at least two digits and can be

as great as ±999.

In this example we use the default precision values with a real number format of “E”.

1> set reals E

1> select number, name, lgtYrsFromSun, hrsPerRotation

2> from planets

3> order by number

4> go

And now, keeping the “E” format we reset the precision.

1> set singlePrecision 3

1> set doublePrecision 5

1> select number, name, lgtYrsFromSun, hrsPerRotation

2> from planets

3> order by number

8 Neptune 0.00048 15.898

9 Pluto 0.00066 NULL

number name lgtYrsFromSun hrsPerRotation

------ ---------- ------------------- --------------

1 Mercury 6.307861850000E-06 2.112840E+02

2 Venus 1.142234440000E-05 NULL

3 Earth 1.585489600000E-05 2.400000E+01

4 Mars 2.420855090000E-05 2.466400E+01

5 Jupiter 8.234316950000E-05 1.002100E+01

6 Saturn 1.510477190000E-04 1.027300E+01

7 Uranus 3.034593000000E-04 1.080100E+01

8 Neptune 4.756468800000E-04 1.589800E+01

9 Pluto 6.625671702000E-04 NULL

number name lgtYrsFromSun hrsPerRotation
56 — Executing A Command

Tutorial
4> go

12.10.3 The g or G Format

The single and double precision floating point numbers are style “f” or “e” (or in style “E” for

an upper case “G” format code), with the precision specifying the number of significant digits.

The style used depends on the value converted: style “e” or “E” will be used only if the expo-

nent resulting from the conversion is less than -4 or greater than the precision. Trailing zeroes

are removed from the result; a decimal point appears only if it is followed by a digit.

In this example we set the real number format to “G” and reset both precision values to “2”.

1> set doublePrecision 2

1> set singlePrecision 2

1> set reals G

1> last

1> select number, name, lgtYrsFromSun, hrsPerRotation

2> from planets

3> order by number

4> go

number name lgtYrsFromSun hrsPerRotation

------ ---------- ------------------- --------------

1 Mercury 6.30786E-06 2.113E+02

2 Venus 1.14223E-05 NULL

3 Earth 1.58549E-05 2.400E+01

4 Mars 2.42086E-05 2.466E+01

5 Jupiter 8.23432E-05 1.002E+01

6 Saturn 1.51048E-04 1.027E+01

7 Uranus 3.03459E-04 1.080E+01

8 Neptune 4.75647E-04 1.590E+01

9 Pluto 6.62567E-04 NULL

number name lgtYrsFromSun hrsPerRotation

------ ---------- ------------------- --------------

1 Mercury 6.3E-06 2.1E+02

2 Venus 1.1E-05 NULL
Executing A Command — 57

Tutorial
12.10.4 The Feedback Command

If feedback is set on, and a database transaction takes several seconds to complete, dbView

will begin displaying a line of dots on your terminal screen until the transaction completes or

until the first row of data from a query is returned. The dots appear at about one second inter-

vals. To see this, we’ll give the database server something hard to do in the next query.

1> set feedback on
1> select distinct (a.name)
2> from sysobjects a, sysobjects b
3> order by a.id
4> go
....... ← feedback dots

name

sysobjects

sysindexes

more rows follow

Feedback may be a misnomer; heartbeat might be better, because, dbView is just waiting for

the transaction to executed by the database server. Unless there is an error, the server does not

communicate with dbView during this time period, so what we’re really seeing is dbView’s

heartbeat while it’s waiting on the server.

12.10.5 Using Sybase’s “Set” Command In dbView

Sybase also has a set command, but if you try to execute it within dbView, you’ll get an error

message, because dbView regards any set command as one of its own. For example, since set
showplan is a Sybase and not a dbView command, you get the error message:

1> set showplan on ← a Sybase command

 Unknown set parameter "showplan".

3 Earth 1.6E-05 24.

4 Mars 2.4E-05 25.

5 Jupiter 8.2E-05 10.

6 Saturn 0.00015 10.

7 Uranus 0.00030 11.

8 Neptune 0.00048 16.

9 Pluto 0.00066 NULL

number name lgtYrsFromSun hrsPerRotation

------ ---------- ------------------- --------------
58 — Executing A Command

Tutorial
To get around this predicament, create a Sybase batch command between the words begin and

end, like so:

1> begin

2> set showplan on

3> end

4> go

STEP 1

The type of query is SETON.

In this case, since the command started with the word begin instead of set, dbView recognized

it as a command to be sent to the database server1.

1 For more information on the Sybase set command, refer to the Sybase Command Reference manual.
Executing A Command — 59

Tutorial
13 Escaping To The Operating System

You can execute an operating system level command from within dbView by preceding the

operating system command with the dbView command escape. The command’s syntax is:

escape <operating system command>

For example, to list the names of all files with the extension “.sql” use the following command:

Unix

1> escape ls -1 *.sql

dbSize.sql

dbView.sql

domains.sql

dropAll.sql

showDb.sql

VMS

1> escape dir [*.sql;*]

dbSize.sql;1

dbView.sql;1

domains.sql;1

dropAll.sql;1

showDb.sql;1

Once the shell command completes, you are returned to dbView.

As another example, we could use the escape command to view a file with an editor:

Unix

1> escape vi dbView.sql

VMS

1> escape edt dbView.sql
60 — Escaping To The Operating System

Tutorial
14 The Help Command

Once you read this tutorial, you’ll want to refer to definitions of dbView command once in a

while. Use the on-line help facility for that. You can get on-line help with the help command.

Help will give you as much information as it can on a topic. If you just type help, you get the

list of subtopics for which there is help:

1> help

Subtopics:

close connect directory

disconnect edit escape

exit expand global

go help history

include info last

leslie macro open

print remove rename

repeat replace report

reset run save

script set show

If you include a topic from a subtopic list as part of the help command, help will:

1. Redisplay the topic.

2. Explain what the topic does.

3. If there are subtopics for the command, help will display the new list of substopics.

For example, the set command takes many parameters as part of the command. If we type

“help set”, we’ll get information about set and the list of subtopics that pertain to the set com-

mand:

1> help set

Topic:

set

The set command allows you to assign a value to a parameter

within dbView.

Subtopics:

defaultMacroFile displayRows displayScriptCommands

doublePrecision editor endField

endRow feedback format

header history mailReport

page printReport promptOnConnect

reals singlePrecision spaces

timer timeout verbose
The Help Command — 61

Tutorial
If we now choose a subtopic, like “set page”, we’ll get further information. Since no subtopics

are displayed for “set page”, we know that there is no further level of detail for this topic:

1> help set page

Topic:

set page

set page <number of display lines>

The number of lines in a page full of display data before dbView

will

stop and wait for you to signal for more. The signal for another

page

of data is <return>. If the number of display lines is set to 0,

dbView understands this to mean an unlimited number of rows

should be

returned on a page.

Default: 10000

Range: 0,,10000

If you enter a topic that help does not recognize, it will give you all the help it can, as the next

couple of examples show.

“sat” is not a command, which help tells us. Then it shows its main list of topics.

1> help sat

WARNING: extra text ignored: sat

Subtopics:

close connect directory

disconnect edit escape

exit expand global

go help history

include info last

leslie macro open

print remove rename

repeat replace report

reset run save

script set show

Help knows about “set”, but not about “set nothing”, so it gives us a warning message to that

effect; and then shows us what it can, in this case information about the set command.

1> help set nothing

WARNING: extra text ignored: nothing

Topic:

set

The set command allows you to assign a value to a parameter
62 — The Help Command

Tutorial
within dbView.

Subtopics:

defaultMacroFile displayRows displayScriptCommands

doublePrecision editor endField

endRow feedback format

header history mailReport

page printReport promptOnConnect

reals singlePrecision spaces

timer timeout verbose

The syntax for the help command is:

help [<topic>]

14.1 The History List

As you enter and execute command, dbView saves them in a history list. You can view the list

of previous commands using the history command:

1> history

---1

show set

---2

select mission, scId

from missions

---3

select objective, mission, scId

from missions

order by objective

---4

showMissions GLL

---5

set page 10

---6

showMissions GLL

1> history 2

1> select mission, scId

2> from missions

3>
The Help Command — 63

Tutorial
You recall any command in the history list, making it the current command, by adding the

command’s history number to the history command. In the example above, we chose the sec-

ond command, history 2. Notice that we are left with a new command line following the com-

mand’s retrieval, so we can decide what to do from there. We can edit the command, execute

it, add to it, etc. For example:

1> history 2

1> select mission, scId

2> from missions

3> edit

…enter the editor where the statement is modified; then return

1> select mission, scId, planet = name

2> from missions, planets

3> where missions.objective = planets.name

4> go

The syntax for the history command is:

history [<command number>]

The square brackets indicated that the number is optional.

14.1.1 Setting The Length Of The History List

By default, the history list contains the last 20 commands. You can change the number of com-

mands saved using the set history command. For example, to save the last 30 commands in the

history list:

1> set history 30

The syntax for this command is:

set history <number of commands in list>

14.2 The last Command

The last command returns the last database command you entered to the command buffer. Use

this command to change settings with dbView commands and then re-execute the last SQL

command. You could use the history command to do this, last is just faster.

For example, if you executed a command and then decided to time it, you could set the timer
command to “on” and then recall the SQL command again using last:

1> select mission, scId

2> from missions

3> go
64 — The Help Command

Tutorial
mission scId

--------------- -----------

Cassini 72

GLL 35

MO 91

VGR 0

(4 row(s) affected)

1> set timer on

1> last

1> select mission, scId

2> from missions

3> go

mission scId

--------------- -----------

Cassini 72

GLL 35

MO 91

VGR 0

(4 row(s) affected)

 SQL statement took 0.03 seconds to execute.

Following the retrieval of the SQL command, you must type “go” to execute it. (Why doesn’t

dbView execute the command immediately for you? Because, you might want to edit it first.)
The Help Command — 65

Tutorial
15 Saving Commands And Data

As you work in dbView, you can save:

• Your session, that is, all of the commands, data and messages sent to the screen.

• Only the commands you enter.

• Only the data retrieved from a database.

Files are opened with one of three open commands. There is a corresponding close command

for each open commands. If the file doesn’t already exist, an open command creates a new file;

otherwise it appends records to the end of the existing file. Files can be opened and closed at

any time during a dbView session. Only one file of any type can be open at a time.

Start saving your dbView session to a file using the command:

open logFile <file name>

and to stop saving it, use:

close logFile

To save only your commands, use:

open commandFile <file name>

close commandFile

To save only data returned from the database, use:

open dataFile <file name>

close dataFile

In the following example, we’ll open three files, one of each type. Then we’ll execute some

commands. And finally, we’ll close the files.

The files are opened in the following sequence:

1> open logFile session.log

1> open dataFile session.dat

1> open commandFile session.sql

Once we’re finished, we close the files with these command:

1> close commandFile

1> close dataFile

1> close logFile
66 — Saving Commands And Data

Tutorial
The contents of the three files appear at the end of this section. The log file contains everything

we typed after the file was opened, including any error messages. The command file contains

the “go” terminator line for commands that require it. A command file can be reexecute in

dbView using the script command which is described in a later section. The data file contains

just the results returned from the database.

15.1 The Show File Command

We use the show file command to see which files we have open. For example, if we open a com-

mand file and then issue the show file command, we see the following:

1> open commandFile example.cmd

1> show file

 commandFile: "example.cmd".

 dataFile not open.

 logFile not open.

15.2 The Directory Command

dbView works out of the directory in which is was invoked, so when you open a file, the file is

opened in the working directory, unless you specify a path name with the file name. You can

change the working directory with the command:

directory [<new path>]

If a new path is not supplied, the command shows you the current directory without changing

it. Here’s an example of how the command works:

1> directory

/usr/franklin

1> directory /usr/franklin/dbData

1> directory

/usr/franklin/dbData

Now, if we were to open a file without specifying a directory path, it would be opened in

/usr/franklin/dbData.
Saving Commands And Data — 67

Tutorial
Log File—session.log

1> open dataFile session.dat

1> open commandFile session.sql

1> set format list

1> select mission, scId, description, objective, created

2> from missions

3> order by mission

4> go

Row 1>

 mission = Cassini

 scId = 72

 description = The Cassini Mission to Saturn

 objective = Saturn

 created = Mar 18 1993 8:51:56:850AM

Row 2>

 mission = GLL

 scId = 35

 description = The Galileo Mission to Jupiter

 objective = Jupiter

 created = Mar 18 1993 8:51:56:890AM

Row 3>

 mission = MO

 scId = 91

 description = The Mars Observer Mission

 objective = Mars

 created = Mar 18 1993 8:51:56:906AM

Row 4>

 mission = VGR

 scId = 0

 description = The Voyager Mission to the outer solar

system

 objective = NULL

 created = Mar 18 1993 8:51:56:940AM

(4 row(s) affected)
68 — Saving Commands And Data

Tutorial
1> select mission

2> from mission

3> go

MDMS DBS WARNING milano::dbview Fri Mar 19 08:25:08 1993

(Db: jar, MsgNo: 208, Svr: 16, St: 1)

Invalid object name 'mission'.

1> set format table

1> set reals E

1> set singlePrecision 3

1> set doublePrecision 5

1> select number, name, lgtYrsFromSun, hrsPerRotation

2> from planets

3> where number >

4> (select number

5> from planets

6> where name = 'Earth')

7> order by number

8> go

number name lgtYrsFromSun hrsPerRotation

------ --------------- ------------- --------------

 4 Mars 2.42086E-05 2.466E+01

 5 Jupiter 8.23432E-05 1.002E+01

 6 Saturn 1.51048E-04 1.027E+01

 7 Uranus 3.03459E-04 1.080E+01

 8 Neptune 4.75647E-04 1.590E+01

 9 Pluto 6.62567E-04 NULL

(6 row(s) affected)

1> close commandFile

1> close dataFile

1> close logFile
Saving Commands And Data — 69

Tutorial
Command File—session.sql

set format list

select mission, scId, description, objective, created

from missions

order by mission

go

select mission

from mission

go

set format table

set reals E

set singlePrecision 3

set doublePrecision 5

select number, name, lgtYrsFromSun, hrsPerRotation

from planets

where number >

 (select number

 from planets

 where name = 'Earth')

order by number

go

close commandFile
70 — Saving Commands And Data

Tutorial
Data File—session.dat

Row 1>

 mission = Cassini

 scId = 72

 description = The Cassini Mission to Saturn

 objective = Saturn

 created = Mar 18 1993 8:51:56:850AM

Row 2>

 mission = GLL

 scId = 35

 description = The Galileo Mission to Jupiter

 objective = Jupiter

 created = Mar 18 1993 8:51:56:890AM

Row 3>

 mission = MO

 scId = 91

 description = The Mars Observer Mission

 objective = Mars

 created = Mar 18 1993 8:51:56:906AM

Row 4>

 mission = VGR

 scId = 0

 description = The Voyager Mission to the outer solar

 system

 objective = NULL

 created = Mar 18 1993 8:51:56:940AM

number name lgtYrsFromSun hrsPerRotation

------ --------------- ------------- --------------

 4 Mars 2.42086E-05 2.466E+01

 5 Jupiter 8.23432E-05 1.002E+01

 6 Saturn 1.51048E-04 1.027E+01

 7 Uranus 3.03459E-04 1.080E+01

 8 Neptune 4.75647E-04 1.590E+01

 9 Pluto 6.62567E-04 NULL
Saving Commands And Data — 71

Tutorial
16 Macro Commands

dbView has a macro command that enables you to assign a name to a set of commands to be

executed. Macros are useful because:

1. They reduce the amount of typing necessary to run frequently executed commands.

2. They hide the complexity of the command sequence represented by the macro name.

3. Macros can have explanatory text associated with them; i.e., they carry their documenta-

tion.

4. Macros can have variables embedded in them; allowing you to modify a macro command

at execution time.

5. Macros can contain more than one command, allowing a mini-script capability.

6. Macros may be executed repeatedly using the repeat command.

In the following sections we’ll describe:

1. How to define, edit and execute a macro command.

2. How to document a macro command.

3. How to save a collection of macro commands in a file and include the macros in a later

dbView session.

4. How to include variables in a macro command.

16.1 Defining And Running A Macro

Macros are defined using the macro command:

macro <name> [<history number>]

When you declare a macro, you give it a unique name. The name can include upper and lower

case letters, numbers and the underscore character “_”. Macro names can not be one of

dbView’s command words, like set, show, open, etc.; but they can be the same as objects defined

in a database.

Here is a simple example definition of a macro named GLL:

1> macro GLL
---Command

1> # This command displays the mission acronym and
2> # spacecraft ID for the Galileo project
3>

4> set timer off
5> print
72 — Macro Commands

Tutorial
6> print “Galileo Mission Information”
7> select mission, scId, objective
8> from missions
9> where mission = "GLL"
10> go
11> done

Let’s take a moment to look at the parts of the macro. The first line has the macro command fol-

lowed by the name of the macro, in this case “GLL”. Once we press return, dbView responds

with the line

---Command

That’s the signal that the macro specification should follow. A macro can contain a mixture of:

• dbView commands. Line 4

• Database commands. Lines 7–10

• References to previously defined macros.

• Bank lines to separate groups of commands within the macro. Line 3.

• Comment lines that begin with zero or more white spaces followed by the pound sign

character “#”. Lines 1–2.

• Print commands that display their contents when the macro is executed. Lines 5–6. Note

that the string to be printed must be quoted with the except of a line that contains no

string. A print command alone just gives you a new line.

Once complete, we end a macro by typing the word “done” on a line by itself. dbView will set

you back at the command line prompt at that point from which you can run the macro.

A few things to note:

• You can cancel a macro command like any other command using <control-c>.

• Database commands are terminated with “go” just as they are in dbView’s command

buffer. (There is an except. If the macro ends with an SQL statement, we only need add

“done”. This will terminate both the query and the macro.)

• Comment and blank lines are for internal documentation. Macro print commands display

their strings when the macro is executed. Use the print command without a following

string to get a blank line.

To execute the macro we’ve just created, we type its name as a new command and press

return:

1> GLL

Galileo Mission Information
Macro Commands — 73

Tutorial
mission scId

--------------- -----------

GLL 35

(1 row(s) affected)

Macros are dbView commands, so dbView executes them immediately. There is no need to fol-

low the name with the “go” terminator when executing a macro command.

16.1.1 The Show Macro Command

Once you have defined some macros, you may want to know refer to them without executing

them. You can use the show macro command for this purpose. The syntax for the command is:

show macro [macro name]

If you don’t include a macro name, the names of all your currently defined macros are dis-

played in alphabetical order. You can peruse the list to find the macro you’re looking for; or

you may discover that you don’t have the exact macro you want; and you need to create a new

one. For example:

1> show macro

 - GLL

 - planet

 - test

Note: If verbose is “on” and you issue the show macro command you’ll see the contents of all of

your macros.

If you include a macro name with the command, the contents of the macro are displayed:

1> show macro GLL
---Command

This command displays the mission acronym and

spacecraft ID for the Galileo project

set timer off

print

print “Galileo Mission Information”

select mission, scId

from missions

where mission = "GLL"

go

Notice that show macro displayed the comment and bank lines we entered in the macro. This is

for your internal documentation; these lines won’t appear when you execute the macro.
74 — Macro Commands

Tutorial
16.1.2 Editing A Macro

You can edit a macro while you’re defining it or later on in a dbView session.

If, while you’re defining a macro, you want to make changes on a line that’s completed, just

type edit as you would for any other command. dbView will display the text of the macro in

your editor. The full text of the macro is displayed, including comments and blank lines.

1> macro mission

---Command

1> # This command displays the mission acronym and

2> # spacecraft ID for the Galileo project.

3> select mission, scId

4> form missions ← misspelled “from”

5> edit ← start editing the macro

Once you return from the editor, dbView redisplays the command, leaving you with an entry

point on a new command line.

Once you have created a macro you can still edit it using the edit macro command:

edit macro <macro name>

For example, to edit the macro we have just created, we would enter the command:

1> edit macro GLL

and the command would appear in the editor looking like this:

This command displays the mission acronym and

spacecraft ID for the Galileo project

set timer off

print

print “Galileo Mission Information”

select mission, scId

from missions

where mission = "GLL"

go

In the editor, we’ll add a field to the select statement and return to dbView.

This command displays the mission acronym and

spacecraft ID for the Galileo project

set timer off

print

print “Galileo Mission Information”

select mission, scId, objective ← this was added

from missions
Macro Commands — 75

Tutorial
where mission = "GLL"

go

Now when we execute the macro, we get this:

1> GLL

Galileo Mission Information

mission scId objective

------------------------ -------- ------------------------

GLL 35 Jupiter

(1 row(s) affected)

16.1.3 Using Edit Macro To Create Another Macro

You can use an existing macro the basis for creating a new macro with the edit macro com-

mand. To do this, follow the name of the currently defined macro with a new macro name.

The syntax is:

edit macro <macro name> [<new macro name>]

For example, if we wanted a macro that would write the results the GLL macro to a file, we

could create a new macro GLLSave starting with the contents of GLL:

1> edit macro GLL GLLSave

The editor would show the contents of the GLL macro which we want to modify.

This command displays the mission acronym and

spacecraft ID for the Galileo project

set timer off

print

print “Galileo Mission Information”

select mission, scId, objective

from missions

where mission = "GLL"

go

We now make changes with the editor so the new macro looks like this:

This command displays the mission acronym and

spacecraft ID for the Galileo project

open dataFile gll.data
76 — Macro Commands

Tutorial
print

print “Galileo Mission Information”

select mission, scId, objective

from missions

where mission = "GLL"

go

close dataFile

Now when we issue the show macro command, we see that the new macro “GLLSave”. Our

old macro, “GLL”, is still there, too.

1> show macro

 - GLL

 - GLLSave

 - planet

 - test

16.2 Using The History List In A Macro Command

You can begin a macro with a statement in the history list by placing the history number after

the macro name in a macro definition. This is most useful for SQL commands. Create the com-

mand in dbView and run it. If it works, create your macro and reference the command with its

history number. Then complete your macro.

1> history

---1

select mission, scId

from missions

where mission = "GLL"

---2

select mission, scId, objective

from missions

where mission = "GLL"

1> macro GLL 2 ← addition of the history number

1> select mission, scId, objective

2> from missions

3> where mission = "GLL"

4> go

5> done

In the example, we selected the second statement from the history list for inclusion in the
Macro Commands — 77

Tutorial
macro command. dbView sets us at the end of the command once it copied it in—we could

continued to add to the command or edit it. Finally we complete the macro with the SQL com-

mand with the “go” terminator and the macro with the “done” terminator.

16.3 Using Macros To Redefine dbView Commands

All of dbView’s commands are spelled out completely. While this helps make them self-

explanatory, it also increases the amount of typing needed to enter a command. You can use

macros to redefine or shorten them.

Macros have an additional ability that we haven’t discussed yet. If you add text following a

macro name, that text is concatenated to the end of the command. We’ll use this capability to

design some generally useful macros that incorporated shortened dbView commands.

As an example, we’ll look at the history command. First we create a macro to redefine history to

be just the letter h:

1> macro h

---Command

1> history

2> done

Now, when we type “h”, we get the history list:

1> h

---18

select mission, scId

from missions

---19

select name

from planets

order by number

---20

h

1>

Since macros concatenate any trailing characters on the command line to the macro, we can

use the same macro to retrieve a command from the history list:

1> h 18

1> select mission, scId

2> from missions

3>
78 — Macro Commands

Tutorial
The macro expands to its definition plus the trailing characters to become:

history 18

Besides redefining dbView commands, we can use macros to create new ones. Putting the

escape command in a macro is a good example.

Create a macro to list our current directory under Unix:

1> macro ls

---Command

1> escape ls -l

2> done

Now we can use the macro to list files:

1> ls *.macros

-rw-r--r-- 1 franklin 660 Mar 24 11:17 example.macros

(Notice that we are again using the feature that a macro will concatenate the string of charac-

ters following it on the command line.)

Now, create a macro to view a file under Unix:

1> macro vi

---Command

1> escape vi

2> done

We can use this macro to view the file we just found using the ls macro:

1> vi example.macros

Now let’s incorporate an SQL statement. When we want to see all of the columns in a table we

can use the command “Select * from <some table>”. We can capture this syntax in a macro

called “all”.

1> macro all
---Command

1> select * from
2> done

Now we can issue the command:

1> set format list

1> all missions

Row 1>

 id = 1
Macro Commands — 79

Tutorial
 mission = Cassini

 scId = 72

 objective = Saturn

 flying = 0

 description = The Cassini Mission to Saturn

 created = Jun 22 1993 5:58:10:403PM

Row 2>

 id = 2

 mission = GLL

 scId = 35

 objective = Jupiter

 flying = 1

 description = The Galileo Mission to Jupiter

 created = Jun 22 1993 5:58:10:460PM

Row 3>

 id = 3

 mission = MO

 scId = 91

 objective = Mars

 flying = 1

 description = The Mars Observer Mission

 created = Jun 22 1993 5:58:10:476PM

Row 4>

 id = 4

 mission = VGR

 scId = 0

 objective = NULL

 flying = 1

 description = The Voyager Mission to the outer solar

system

 created = Jun 22 1993 5:58:10:493PM

(4 row(s) affected)

We could qualify our statement with an SQL WHERE clause also.

1> all missions where objective = 'Jupiter '

Row 1>

 id = 2

 mission = GLL

 scId = 35

 objective = Jupiter

 flying = 1
80 — Macro Commands

Tutorial
 description = The Galileo Mission to Jupiter

 created = Jun 22 1993 5:58:10:460PM

(1 row(s) affected)

Notice that since “all” is a macro, we’ve found a way to execute the SQL statement immedi-

ately—we didn’t add a “go” terminator because this is a macro.

16.4 Using Variables In Macro Definitions

In the last section, we began to explore the idea of modifying a macro by concatenating text to

the end of the macro command when we execute it. dbView has a more general mechanism

for modifying macros at execution time—variable substitution.

In our “GLL” macro we got back information on the Galileo Mission. We can change that

macro so we get back information on any specified mission. Let’s edit our previous macro so it

includes a local variable in place of the value “GLL”. (A local variable applies to a single macro

in which it’s defined. Later we’ll see that dbView also has global variables defined outside of

macros, but usable by them.). But now, back to our example.

1> edit macro GLL

In the editor, we change “GLL” to “$mission_name”. Local variables always begin with a dol-

lar sign followed by a string that becomes a prompt when you execute the macro. The prompt

string can contain lower and upper case letters, numbers and the underscore character “_”;

and it can be of any length allowed on your system.

We also change the text we display when the macro is executed to explain to the user what is

expected.

This command displays the mission acronym and

spacecraft ID for the Galileo project

set timer off

print

print “Display the mission name (acronym), spacecraft ID and”

print “primary objective (planet) for the mission name”

print “supplied at the macro's prompt.”

print

select mission, scId, objective

from missions

where mission = " $mission_name " ← the local variable

go

Since we’ve now made a general macro that will return information for any mission, we

should rename it. To do this we use the rename macro command. The syntax is:

rename macro <current name> <new name>
Macro Commands — 81

Tutorial
For our example, we’ll do this:

1> rename macro GLL mission

Now when we execute the updated and renamed macro, we see:

1> mission

Display the mission name (acronym), spacecraft ID and

primary objective (planet) for the mission name

supplied at the macro's prompt.

mission_name []: Cassini

mission scId objective

------------------- ----------- -----------------------

Cassini 72 Saturn

(1 row(s) affected)

The local variable we defined becomes a prompt that is displayed when we execute the macro.

We responded to the prompt by entering the name “Cassini”. dbView substitutes this value

for the local variable so the SQL command sent to the database server becomes:

select mission, scId, objective

from missions

where mission = " Cassini "

Notice that we includes the local variable within the string quotation marks required by the

SQL language. Then, at the prompt, you did not have to provide a quoted string. If we had not

enclosed the variable with quotation makes, we would have need to supply them.

16.4.1 Local Variables And Default Values

When the macro was executed, you may have noticed that the prompt was followed by a pair

of square brackets, []. If you now executed the macro again, you last response to the prompt

becomes the default value and appears in the square brackets.

1> mission

Display the mission name (acronym), spacecraft ID and

primary objective (planet) for the mission name

supplied at the macro's prompt.

select mission, scId, objective

mission_name [Cassini]: GLL
82 — Macro Commands

Tutorial
mission scId objective

--------------- ----------- ---------------

GLL 35 Jupiter

(1 row(s) affected)

We can accept a default value at a prompt by typing <return>, or we can enter a new value as

we did in the above example.

There are two types of default values associated with local variables: session and persistent.

Session Defaults
Whenever you enter a new value for a local variable, it is saved; and the next time you

execute the macro it is displayed as the default value. The default values last for the

life of the dbView session only.

Persistent Defaults
A persistent default value acts like a session default, but it is defined in the macro

along with the local variable; and it persist across dbView sessions, i.e., it appears as

the default whenever the macro is first used in a session. (We’ll discuss how macros

are saved to files shortly.)

We can change the mission macro to include a persistent default value. The values is enclosed

in square brackets—the syntax for a default value—immediately following the declaration of

the local variable.

The persistent default value—we’ve made it “Cassini”—and its local variable are in bold type.

1> show macro mission

---Command

print

print “Display the mission name (acronym), spacecraft ID and”

print “primary objective (planet) for the mission name”

print “supplied at the macro's prompt.”

print

select mission, scId, objective

from missions

where mission = " $mission_name[Cassini] "

Notice that the persistent default value in included with the local variable within the quotation
marks used for string values in an SQL SELECT statement.

We’ve included this macro in our default macro file using the save macro command. Now

when we execute the macro in a new dbView session, the default for mission_name is already

set to “Cassini”.

dbView, version 1.4, (dblib, milib), 28 Nov 1994

Copyright 1993, The Jet Propulsion Laboratory. All rights

reserved.
Macro Commands — 83

Tutorial
userName [franklin]:

password:

server [CATALOGDBS]:

database [catalog]:

1> mission

Display the mission name (acronym), spacecraft ID and

primary objective (planet) for the mission name supplied

at the macro's prompt.

mission_name [Cassini]: ← persistent default value

mission scId objective

------------------- ----------- -----------------------

Cassini 72 Saturn

(1 row(s) affected)

If we had entered a different value at the prompt, “GLL” for example, the default would

change to “GLL” for the rests of this session, or until we again changed the value. In subse-

quent sessions, however, the default would again be “Cassini”.

16.4.2 The Special Local Variable $password

If you include the local variable $password in a macro, dbView handles it in a special way:

• When you type in a value at the prompt, the value is not echoed to your screen.

• There is no default value for the local variable, you must always type it in at the prompt.

• The variable is special in that dbView reserves the name for special handling.

$password—all lower case letters—is used when you are executing a command from within

dbView that requires a database server password. In the following example, we create and run

a macro that will load the missions table data into a database using the Sybase bcp utility. Since

bcp requires a password, we include the variable in the macro. If we were to “hard code” the

password value in the macro and then save the macro in a file (see "Including, Saving, And
Replacing Macro Definitions" on page 87), we would be violating security rules.

The macro definition is shown below. We’ve highlighted the $password variable in bold type

so you can see it in the command.

1> show macro bcpCommand

---Command

print

print “Loading mission data into the ‘example’ database”
84 — Macro Commands

Tutorial
print “using bcp.”

print “--Enter the password to be used by "bcp" at the prompt.”

print

escape bcp example.dbo.example in mission.dat -c -U sa -P

$password -S CATALOGDBS

Now when we run the macro, we see this:

1> bcpCommand

Loading mission data into the ‘example’ database

using bcp.

 --Enter the password to be used by "bcp" at the prompt.

password: ← value not echoed

1>

Note the word ‘example’ is in single quotes in the print string. You can’t use double quotes

within a print string.

(We’ll see this macro used in a broader context when we look at scripts—files than can contain

dbView command to be executed—see "Copying A Database Tables Contents" on page 127.)

16.4.3 Summarizing Macro Local Variable Rules

1. Local variable names can only appear in macro commands.

2. Variable names begin with a dollar sign.

3. Variable names can be of any length. The names can include letters of the alphabet, num-

bers (integers), and the underscore character, “_”.

4. dbView performs string substitution on variable names, replacing the name with the

string supplied by you. Therefore, variables can appear anywhere in a macro command.

5. When you execute a macro, dbView uses the macro name as a prompt. Following the

prompt, dbView displays a pair of square brackets, []. These brackets will contain the

default value for the prompt. The default value is always the last value supplied for the

variable. In the case of persistent default values, the default value always appears.

6. The value supplied at a local variable prompt can be any string of characters. dbView

accepts everything you type on the remainder of the prompt line. That means that strings

containing spaces are accepted; for example:

1> theDate

theDate []: April 14, 1993

The string, “April 14, 1993”, is the value assigned to the local variable $theDate.
Macro Commands — 85

Tutorial
16.5 Repeated Execution Of Macros

If you precede a macro with the command word repeat, the macro will be repeatedly executed

until you type <control-c>. This command is particularly useful when you want to insert or

update data in a table. For example, let’s create a new table containing a user ID and a name,

and then add some records to the table using a macro that contains an insert statement. First

we create the table, which we’ll call example:

1> create table example (
2> id int ,

3> name varchar(15)
4>)
5> go

Next, we’ll create the macro that inserts the data:

1> macro doExample
---Command

1> insert into example (id, name)
2> values ($id, '$name')
3> go
4> done

Finally, we execute the macro, preceding the macro’s name with the repeat command so it will

execute until interrupted:

1> repeat doExample
id []: 1

name []: Franklin

(1 row(s) affected)

id [1]: 2

name [Franklin]: Washington

(1 row(s) affected)

id [2]: 3

name [Washington]: Jefferson

(1 row(s) affected)

id [3]: ^C ← this gets us out of the loop
1>
86 — Macro Commands

Tutorial
To finish off the example, we retrieve the information we just stored in the example table:

1> select * from example
2> go

id name

----------- ---------------

 1 Franklin

 2 Washington

 3 Jefferson

(3 row(s) affected)

16.6 Including, Saving, And Replacing Macro Definitions

16.6.1 Saving Macros To A File

Once we’ve defined a macro, we’d like to save it so we can use it in a later dbView session. To

do this we use the save macro command:

save macro <file name> <macro name>

If the file name is new, dbView creates it and writes the macro to the file. If the file exists,

dbView writes the macro to the file. If the macro is already present in the file, the old definition

is removed and the new one place in the file.

For example, to save the mission macro to the file example.macros , we do this:

1> save macro example.macros mission

16.6.2 Removing A Macro Command

If you want to remove a macro definition, use the command:

remove macro <macro name> [<macro file name>]

This command removes the macro definition from the dbView session. If you include the

name of a macro file in the command, the macro’s definition is removed from the file also. For

example:

1> show macro GLL

---Command

This command displays the mission acronym and

spacecraft ID for the Galileo project

set timer off

print
Macro Commands — 87

Tutorial
print “Galileo Mission Information”

select mission, scId, objective

from missions

where mission = "$mission_name"

go

1> remove macro GLL

1> show macro GLL

 Unknown macro name "GLL".

After executing the remove macro command, you can no longer reference the macro. If you do,

dbView will identify it as a command that should be sent to the database server, and you will

get an error message.

If we include a file name, the macro is removed from the file as well. For example:

1> directory /usr/franklin

1> remove macro GLL example.macros

The remove macro command removes a macro from a file even if the macro is no longer

defined within dbView.

We could have included a directory path in the last example if dbView was not currently

“looking at” the directory where the macro file exists. This would change the example to look

like this:

1> remove macro GLL /usr/franklin/example.macros

16.6.3 Exiting From dbView Once You’ve Made Changes To Macros

Once you’ve made changes to macros, you probably want to save them before exiting from

dbView. If you forget, dbView will prompt you with the following message:

1> exit

You have made changes to macro definitions. They can be saved

using the "save macro" command. The following are the changed

macros:

 GLL

 exit anyway? { y | n } [n]: ← typing <return> accepts the default–”no”

1> save macro example.macros GLL

dbView will prompt you before exiting if you’ve used any of the following command to

create or change a macro or global variable definition:

global
88 — Macro Commands

Tutorial
macro

edit macro

rename macro

To exit without saving macros, you could answer “y” (yes) to the prompt in the example

above, or you could add a parameter to the exit command so it looks like this:

1> exit ignore set global macro

In this case, you force dbView to exit without checking to see if you’ve created macros. This

form of the exit command could be useful in a script file that executes without your interven-

tion within dbView.

16.6.4 Including A Macro File

Once a set of macros is saved to a file, we can include the macros in our dbView session by

using the command:

include macro <file name>

For example:

1> include macro example.macros

or if the macro is not in dbView’s current directory

1> include macro /usr/franklin/example.macros

You can use the include macro command to include macros from as many files as you like.

Macro loading is cumulative, which means:

1. As new macros are loaded, the old macro definitions remain defined.

2. If a new macro has the same name as an old one, the new one replaces the old one unless

the old macro has been edited and not yet saved in your current dbView session.

16.6.5 The Default Macro File

You can also load one or more macro files when you start dbView by specifying the file paths

as default macro files with the command:

set defaultMacroFile <file specification> … [<file specification>]

The file specification includes the entire directory path along with the file name. If you include

more than one default macro file, place one or more spaces between the file specifications. All

of the files must appear on a single line, even if it means that the text wraps to the next line,

because dbView executes the command as soon as you press <return>.

For example, if we wanted to include our standard set of macros plus those used just for this

tutorial, we would include two files containing macro definitions:
Macro Commands — 89

Tutorial
1> set defaultMacroFile /usr/franklin/standard.macros /usr/

franklin/example.macros ← a single wrapped line

Now, the next time you start dbView, the macros in these files are loaded immediately, ready

for use. You can change the default macro specification at any time, but it wouldn’t take

effect—the macros won’t be loaded automatically—until your next dbView session starts.

When you set the path name of a default macro file, dbView checks to determine if it can find

the file. If it can’t, dbView displays an error message. For example:

1> set defaultMacroFile /usr/junk

WARNING: Unable to open defaultMacroFile:

/usr/junk.

Your default macros cannot be loaded at startup.

MDMS SYSTEM WARNING candide::dbView Fri Apr 23 11:07:53 1994

(2) No such file or directory

Also, if some change was made to your configuration that prevents dbView from reading the

default macro file at start-up time, you will receive error messages to that effect that dbView

can’t load the macros properly:

% dbView

dbView, version 1.4, (dblib, milib), 28 Nov 1994

Copyright 1993, The Jet Propulsion Laboratory. All rights

reserved.

WARNING: Could not open default macro file:

/usr/franklin/example.macros.

MDMS SYSTEM WARNING candide::dbView Fri Apr 23 11:03:54 1994

(2) No such file or directory

16.6.6 Replacing A Set Of Macros

If you are loading more than one macro file and you don’t want the macro definitions to be

cumulative, use the command:

replace macro [<file name>]1

In this case the macros from the new file are loaded once all of the old macros are removed

from dbView. Here’s an example in which the macros in the file example.macros are

replaced by those in the file new.macros .

1 dbView will not execute this command if you have created new macros and not yet saved them. It pro-

tects you from destroying your own work.
90 — Macro Commands

Tutorial
1> include macro example.macros

1> replace macros new.macros

16.6.7 Sharing Macro Files

dbView stores macros in ASCII formatted files so that you can use them on different types of

machines. This also allows you to send the files over a network to other people who may dif-

ferent types of hardware.
Macro Commands — 91

Tutorial
17 Global Variables

We have already introduced macro variables. However, we left something out at that time to

simplify the presentation. It’s also possible to define global variables in macros—the variables

we described earlier are referred to as local variables.

Global variables are used to define a value that is frequently used across more than one macro.

They differ from local variables in the following ways:

1. A global variable is defined within dbView using the global command and the global vari-

ables value is referenced within a macro or another global by preceding the variable name

with two dollar signs, e.g., $$planet. (Local variables are preceded by a single dollar sign,

e.g., $planet.)

2. Global variables are independent of particular macros and can be reference by any macro

during a dbView session.

3. Once defined and included in a macro, a global variable’s value is automatically substi-

tuted in the macro at the time the macro is executed. dbView does not prompt for the

value of a global variable.

4. Global variables are saved, loaded and replaced, along with macros, using the commands

save macro, include macro and replace macro. This means that a set of global variables is

saved to a file along with macros.

17.1 The global Command

A global variable is defined with the global command:

global <name> <global variable> [<value>] | <value>

The global command is a single line command, and therefore executed immediately when you

press the <return> key.

For example:

1> global object mission

The global variable object is assigned the value “mission”.

In the next example,

1> global fileName $$object.tmp

the global variable fileName is assigned the value of the global variable object concatenated

with the value “.tmp”. Since dbView won’t be able to evaluate the global variable object used

as part of the fileName global variable, we use the nomenclature $$object which “stands in”

for the value until its actually used.

A global variable like object is the name of variable. When the dollar signs are placed in front
92 — Global Variables

Tutorial
of the global variable $$object, it refers to the value of the variable. So, when you define a global

variable you assign a value to the name:

1> global object missions

and when you use a global variable, you reference the value by proceeding the variables name

with the dollar signs:

1> global fileName $$object.tmp

17.1.1 Seeing Global Variable Assignments

You can see the definition of global variables using the command:

show global [<variable>]

For example:

1> show global

 - fileName = $$object.tmp

 - object = missions

Or, if you only want to see a specific one:

1> show global fileName

 - fileName = $$target.tmp

17.1.2 The Expand Global Command

Notice that the definition of fileName is “$$target.tmp”. If you want to fully expand the global

variable so that you can see what it would evaluate to at run time, use either of the commands:

expand global <global variable>

For example:

1> expand global fileName

missions.tmp

This command is useful for debugging complicated global variables.

You can also expand a macro to see the run-time value of global variables referenced in the

macro—see "The Expand Macro Command" on page 94.

17.2 Referencing Global Variables In Macros

Once defined, you can reference a global variable in any number of macros. In the following

examples we define a select statement, and commands to open a file and to delete a file. All

three macros can be changed simply by changing the value assigned to object. (The two macros
Global Variables — 93

Tutorial
that manipulate files are defined indirectly through the fileName global variable which gets its

value from object.)

The example assumes that we’ve already defined the global variables object and fileName.

1. Create an SQL SELECT statement that will retrieve all of the data from the table refer-

enced by the global variable object.

1> macro showTable
---Command

1> print “Select all of the data from the table whose”
2> print “name is assigned to the global variable”
3> print "‘object’.”
4> select *
5> from $$object
6> go
7> done

2. Open a data file using the value of fileName, the global variable that includes a reference to

the other global variable object.

1> macro openFile
---Command

1> open dataFile $$fileName
2> done

3. Define a macro to remove the file opened by the previous macro. (This macro uses the

dbView escape command to execute a command at the operating system level. The exam-

ple removes the file using the Unix rm command.)

1> macro removeFile
---Command

1> escape rm $$fileName
2> done

We’ll show a practical application that moves a table from one database to another using these

global variables and macros when we discuss scripts—files that contain a collection of dbView

commands, see "Copying A Database Tables Contents" on page 127.

17.2.1 The Expand Macro Command

Once global variables are defined and reference in a macro, you can see the run-time value of

the macro using the command:

expand macro <macro name>

As an example, we’ll define our global variables again, then look at the macro “openFile”

using both show macro and expand macro to see the difference.
94 — Global Variables

Tutorial
1> global fileName $$object.tmp

1> global object missions

1> show macro openFile
---Command

open dataFile $$fileName

1> expand macro openFile

open dataFile missions.tmp ← the value at run-time

Show macro gives the definition of the macro, while expand macro shows its current evaluated

state. Expand macro is most useful for debugging a macro that references global variables.

17.3 The Remove Global Command

Just as there is a remove macro command to remove a macro definition, so there is an remove glo-
bal command to remove a global variable definition. The syntax is:

remove global <name> [<macro file name>]

Global variables are stored along with the macros that use them, so the file name used with

the command is a macro file name.

For example:

1> remove global object example.macros

or

1> remove global object /usr/franklin/example.macros

Note: Once we’ve removed the global variable object, any macro that reference the global vari-

able will not execute. See the next section.

17.4 Undefined Global Variables In Macros

If you execute a macro containing an undefined global variable, you’ll get an error message

like this:

1> set verbose on

1> showTable

Select all of the data from the table whose name is

assigned to the global variable "object".

Global variable 'object' not defined. Macro command
Global Variables — 95

Tutorial
 aborted .

17.5 Global Variables And Macro Files

Since global variables are associated with macros, when you have a macro, the global vari-

ables reference in the macro are also save to the same file. The global variables being saved

replace any existing definitions in the macro file.

When you execute an include macro command, global variables in the file are also brought in

and defined in your current session.

When you execute a replace macro command, it removes all of the current global definitions in

your dbView session.

If you create a global variable that is not associated with a macro, there’s no way to save it

because global variables are saved when the macro in which they are referenced is saved.

dbView will warn you about such variables when you exit. At that time, you should either

associate the variable with a macro and save the macro, or you should exit anyway.
96 — Global Variables

Tutorial
18 Finding Out About Database Objects1

18.1 Sybase Database Objects

The show db command is used to display information about objects in the current database

including:

• tables—both user and system defined

• views

• stored procedures

• triggers

• defaults

• rules

The syntax for the command is:

show db [<database object name>]

If you don’t include the name of an object in the database, dbView returns the list of all objects

in the current database organized by type, i.e. default, stored procedures, rules, etc. For exam-

ple:

1> show db

defaults :

 default_timeOfDay

stored procedures :

showMissionObjective showMissions

 showPlanets

rules :

 rule_zeroOne

system tables :

sysalternates syscolumns

syscomments sysdepends

sysgams sysindexes

syskeys syslogs

sysobjects sysprocedures

sysprotects syssegments

systypes sysusermessages

1 This version does not support show db for Illustra databases.
Finding Out About Database Objects — 97

Tutorial
 sysusers

triggers :

missionsDelTrig missionsInsUpdTrig

user tables :

missions planets

views :

 missionObjective

You can then use the list to get more specific information about a particular object, like the mis-
sions table. The information returned on a specific object depends on the object’s type. In the

following sections we’ll illustrate how show db reacts for different types of database objects.

18.1.1 Table Information

Suppose we include the object name “missions” with the show db command. dbView would

then display the following:

1> show db missions

Table: missions

Owner: dbo

The first line tells us that “missions” is a table and that its owner is “dbo” (database owner).

Next, dbView lists information about the columns—or fields—in the table. The first column is

the order of the column in the table. The second column is the name of the column in the table.

The last three columns give us information about the table column’s data type, including the

data type name, length in bytes and whether or not the column will accept NULL values.

If you include the verbose option, you see the same display just described. Following that,

you’ll see additional table information. This information is only displayed if it exists. In other

colid column data type length nulls?

----- ---------------------- ------------ ------ ------

1 id id 4 No

2 mission name 30 No

3 scId id 4 No

4 objective name 30 Yes

5 flying flag 1 No

6 description description 255 Yes

7 created timeOfDay 8 No
98 — Finding Out About Database Objects

Tutorial
words, if there are no indexes on the table, you won’t see the “Indexes” title. dbView returns

the following additional information on tables after the command set verbose on has been exe-

cuted.

1. Indexes—The name of the index is given followed by the names and order of the columns

included in the index. A second line describes the characteristics of the index.

2. Keys—Foreign and common key definitions. Key definitions are important because they

show you how one table is related to another.

3. Capabilities—This is the list of actions you can carry-out on the object. For example, if you

have the “select” capability on the table, you can query it. If you are the owner of the table,

Capabilities returns the word “all”, meaning that you have all capabilities on the table. If

you have no capabilities, the word “none” is returned.

4. Defaults—The columns in the table having default values associated with them are listed

along with the name of the default. To see the definition of the default, use the show db
command with the name of the default.

5. Rules—The columns in the table having rules associated with them are listed along with

the name of the rule. To see the definition of the rule, use the show db command with the

name of the rule.

6. Triggers—Tables can have insert, update and delete triggers associated with them. If any

of these exist, their names are listed. To see the definition of a trigger, use the show db com-

mand with the name of the trigger.

7. Related Stored Procedures—Any stored procedures that reference the table are listed next.

To get more information about a procedure, use the show db command with the name of

the procedure.

Here we repeat the show db command for the missions table, but this time we’ll execute the

command in dbView’s verbose mode.

1> set verbose on

1> show db missions

Table: missions

Owner: dbo

colid column data type length nulls?

----- ---------------------- ------------ ------ ------

1 id id 4 No

2 mission name 30 No

3 scId id 4 No

4 objective name 30 Yes
Finding Out About Database Objects — 99

Tutorial
Indexes:

- missionPK1 on column(s) mission

clustered, unique located on default

- missionFK1 on column(s) objective

nonclustered located on default

Keys: 1

- foreign: mission.objective -> planets.name

- common: missions.objective <-> planets.name

Capabilities:

- select

- insert

- update

Defaults:

- default_timeOfDay on column created

Rules:

- rule_zeroOne on column flying

Triggers:

-insert: missionsInsUpdTrig

-update: missionsInsUpdTrig

-delete: missionsDelTrig

Related Stored Procedures:

- showMissionObjective

- showMissions

18.1.2 View Information

SQL views are virtual tables that offer a view of data contained in one or more physical tables

within the database. The examples in this section use a view named missionObjective that con-

tains columns from the missions and planets tables. The columns are brought together in the

view using the SQL join operation, but when you query the columns, they appear to be in one

table, which is actually the view, missionObjective.

5 flying flag 1 No

6 description description 255 Yes

7 created timeOfDay 8 No

1 Because of the limited scope of our examples, both foreign and common keys have the same definitions.

colid column data type length nulls?

----- ---------------------- ------------ ------ ------
100 — Finding Out About Database Objects

Tutorial
If verbose mode is not active, we see:

1> show db missionObjective

View: missionObjective

Owner: dbo

When we’re in verbose mode, we get additional information, including:

1. Capabilities—This is the list of actions you can carry-out on the view. For example, if you

have the “select” capability on the view, you can query it. If you are the owner of the view,

the capabilities returns the word “all”, meaning that you have all capabilities on the view.

If you have no capabilities, the word “none” is returned.

2. Associated Tables—The names of the tables referenced by the view.

3. Associated Procedures—The names of any stored procedures that reference the view.

4. Description—The SQL statement that defines the view, along with any header informa-

tion associated with the view’s definition.

For example:

1> set verbose on

1> show db missionObjective

View: missionObjective

Owner: dbo

colid column data type length nulls?

----- ---------------- --------- ------ ------

1 mission name 30 No

2 scId id 4 No

3 name name 30 Yes

4 lgtYrsFromSun float 8 Yes

5 hrsPerRotation real 4 Yes

6 yrsPerRev real 4 Yes

colid column data type length nulls?

----- ---------------- --------- ------ ------

1 mission name 30 No

2 scId id 4 No
Finding Out About Database Objects — 101

Tutorial
Capabilities:

- all 1

Related Tables:

- missions

- planets

Related Stored Procedures

- showMissionObjective

/*

** VIEW

** missionObjective

**

** FUNCTION

** Joins information in the missions and objectives tables.

*/

create view missionObjective (mission, spacecraft, planet,

lgtYrsFromSun, hrsPerRotation, yrsPerRev)

as

select mission, scId, name, lgtYrsFromSun,

hrsPerRotation, yrsPerRev

from missions, planets

where missions.objective *= planets.name

18.1.3 Stored Procedure Information

When dbView displays information about a stored procedure, it states the name of the proce-

dure and owner. This if followed by a table listing of the specification for each parameter

accepted by the stored procedure. For example:

1> show db showMissions

Procedure: showMissions

3 name name 30 Yes

4 lgtYrsFromSun float 8 Yes

5 hrsPerRotation real 4 Yes

6 yrsPerRev real 4 Yes

1 For this example, we have assumed that you own the view; you therefore have all capabilities on it.

colid column data type length nulls?

----- ---------------- --------- ------ ------
102 — Finding Out About Database Objects

Tutorial
Owner: dbo

In verbose mode, dbView includes the following additional information:

1. Capabilities—For a stored procedure, the capability you have is either “execute” or

“none”.

2. Text—This is the text of the stored procedure, including any header information associ-

ated with the procedure’s definition. The header information often gives you additional

information about the syntax of the procedure and a description of its function. For exam-

ple:

1> set verbose on

1> show db showMissions

Procedure: showMissions

Owner: dbo

Capabilities:

- execute

/*

** PROCEDURE

** showMissions [missionName]

**

** FUNCTION

** Show mission information. If name is supplied,

** information for that mission.

*/

create procedure showMissions

@missionName name = null

as

begin

print " MISSION INFORMATION”

print " "

if @missionName = null

begin

colid name data type length

----- ---------------------- ------------ ------

1 @missionName name 30

colid name data type length

----- ---------------------- ------------ ------

1 @missionName name 30
Finding Out About Database Objects — 103

Tutorial
select mission, scId, objective, description, created

from missions

order by mission

end

else

begin

select mission, scId, objective, description, created

from missions

where mission = @missionName

end

end

18.1.4 Trigger, Default And Rule Information

Triggers, defaults and rules are integrity objects associated with objects in the database. You

find their names when you use the show db command on a table. If you then supply the name

of a trigger, default or rule with the show db command, dbView displays the complete text

used to implement the integrity object, along with any header information that explains its

use. In the following example, we examine the rule “rule_zeroOne”; Triggers and defaults

would display similar information.

Setting verbose to “on” has no effect for triggers, defaults or rules.

1> db help rule_zeroOne

Rule: rule_zeroOne

Owner: dbo

/*

** RULE

** rule_zeroOne

**

** FUNCTION

** A boolean function. Value must be 0 or 1. The pair can

** signify binary sets like {no, yes}, {off, on},

** {not OK, OK}, {stop, go}, etc. The values can also be used

** for logical tests in programming languages like C.

*/

create rule rule_zeroOne as @value in (0, 1)

18.2 Illustra Database Objects

Planned but not currently implemented.
104 — Finding Out About Database Objects

Tutorial
19 Defining and Running Reports1

You can use dbView to define and run simple database reports. By simple report we mean one

that contains information returned by a single query statement—either an SQL SELECT state-

ment, a stored procedure or a dbView macro that returns a single set of result rows. You create

and run reports with the following commands:

report <file name> [<history number>]
Creates a report. The report specification is saved in the file whose name you supply.

If you include a history number, the report will be generated using this command in

the dbView history list.

edit report < file name>
Once you’ve created a report, you can alter its contents with this command.

run report < file name> [<report name>]
This command runs the report using the specification found in the file whose name

you supply. If you also supply a report name, the report is written to a file by that

name.

19.1 Sample Reports

We’ll use a couple of examples to illustrate how reports are defined and generated. For both of

the examples, we first show the report, the specification used to generated the report and

finally we’ll discuss the reporting topics that the example introduces.

19.1.1 The Report mission.rpt

This report was generated using the query:

select mission, id, scId, description, created

from missions

order by mission

1 The report specification design borrows ideas from the Perl language created by Larry Wall.
Defining and Running Reports — 105

Tutorial
Running the report results in the following two page report. In the first record of the report,

we have placed the values returned by the SELECT statement in bold type.

 MISSION REPORT

 Cassini Mission IDs - Mission: 1 Spacecraft: 72

 The Cassini Mission to

 Saturn

Record Creation Date: Jul 28 1993

 9:08:01:730AM

 GLL Mission IDs - Mission: 2 Spacecraft: 35

 The Galileo Mission to

 Jupiter

Record Creation Date: Jul 28 1993

 9:08:01:790AM

Wed Jul 28 09:45:19 1993 Page: 1

Table 2: First Page Of The Report

 MO Mission IDs - Mission: 3 Spacecraft: 91

 The Mars Observer

 Mission

Record Creation Date: Jul 28 1993

 9:08:01:810AM

 VGR Mission IDs - Mission: 4 Spacecraft: 0

 The Voyager Mission to

 the outer solar system

Record Creation Date: Jul 28 1993

 9:08:01:840AM

Wed Jul 28 09:45:19 1993 Page: 2

Table 3: Second Page Of The Report
106 — Defining and Running Reports

Tutorial
The specification for the report is listed below. Each section of the report specification starts

with a banner that has been highlighted in bold type. Notice that each part of the report speci-

fication ends with the dbView “go” termination command.

 We’ll go through each section and explain what effect it had on the report’s output.

---Database command:

select mission, id, scId, description, created

from missions

order by mission

go

---Report title:

 MISSION REPORT

go

---Field header:

go

---Field format:

>>>>>>>>>>>> Mission IDs - Mission: <<<< Spacecraft: <<<<

 <<<<<<<<<<<<<<<<<<<<<<<<

Record Creation Date: <<<<<<<<<<<<<<<<<<<<<<<<<

go

---Footer:

$date Page: $page

go

---Page length [66]:

18

---Mail to:

washington@presidents.gov

jefferson@presidents.gov

go

---Printers:

lpr -Plw

go

---End.

1. Database command

This section contains the query statement used to create the report. Here we used an SQL

SELECT statement. We could also have use a database stored procedure or a dbView

macro as long as the command returned only a single query result set.

2. Report title
Defining and Running Reports — 107

Tutorial
This is the information that will appear at the top of the first page of the report. Our exam-

ple has the centered text “MISSION REPORT”. Any of the format specification sections

can contain multiple lines. For the header, we have placed blank lines above and below

the title.

3. Field header

This is the information that appears at the top of each page in the report—normally its the

field headers for the columns of data returned by the query. For this example, no field

headers are used, so we simply supply the “go” terminator to move on to the next section.

4. Field format

This is the section where you specify the format of the data returned by the query. The for-

mat can be specified on multiple lines as the example illustrates. The field format can con-

tain “boiler plate text”—text you supply—as well as data returned from the database.

Data is returned in those areas of the specification that contain character strings like:

<<<<<<<<<< ← left justified

or

>>>>>>>>>> ← right justified

Strings of “>” characters will right justify the retuned results in the field, and string of “<“

characters will left justify the results. Each format specification character represents one

character of the returned value, so if you want an attribute to fill a 10 character field, you

would supply 10 contiguous “<“ or “>” characters.

The two field formats shown above convert any database attribute to a character string,

including integers, real numbers, text and dates. The attributes id and scId are integers

placed in left justified character fields. (In the next example we discuss the placement of

number in numeric fields as the difference between that format and character format for

numbers.)

The attribute created is a date, also placed in a left justified character field. The date and

time are wrapped, which we’ll discuss in a moment.

To get a feel for how the specifications are used to format a report, look at the example

report and its specification on the previous pages.

Notice that there is one format specification for each attribute in the database query state-

ment and that the format specifications are filled sequentially following the order of the

fields in the query statement. This is true even when the specifications are on different

lines. The report function starts with the first query attribute and puts its value in the top,

left field specification. dbView continues to the right and down the page, matching query

attributes and format specifications.

If there are fewer format specifications than query attributes, you will receive an error
108 — Defining and Running Reports

Tutorial
message when you run the report. For example:

1> run report example.rpt

 Report specified 1 field format(s).

 There were 2 specified in your database statement.

And if there are more format specifications than query attributes, the error message will

read like this:

1> run report example.rpt

 Report specified 3 field format(s).

 There were 2 specified in your database statement.

The last two format specifications deserves some special notice. The formats are not large

enough to contain the entire value for the fields description and created in the SELECT

statement, so the text is wrapped automatically within the specification’s limits. Normally,

wrapping occurs on word boundaries, but if the word is too long to fit in the format field

specification, dbView breaks the text in the middle of a word. Wrapping only applies to

the left justified field specification—the one you would use normally for text strings.

Also notice that the last field specification accepts values from the table attribute, created,

which is a date data type in the database. dbView automatically makes the conversion to a

character string.

5. Footer

The footer contains information that appears at the end of each page. Like all sections of

the report specification, if the footer is empty—contains only a line with the “go” termina-

tor on it—the footer is not used in the report. It can include boiler plate and any of the fol-

lowing special variables:

• $date—The current date that looks like:

Wed Jul 28, 93

• $longdate—The current data and time that looks like:

Wed Jul 28 09:45:19 1993

• $page—The current page number of the report.

You can mix special variables and “boiler plate”. In the example we used:

Page: $page

for the page numbers in the finished report.

6. Page length [66]

This is the length of a report page. By default, it is 66 lines. For the example, we set the

page length to 18 lines so the report would generate more than one page.

7. Mail to
Defining and Running Reports — 109

Tutorial
This is the list of people or groups to which the report is automatically sent when you gen-

erate the report. If your report has a mailing list, but you don’t want mail sent when you

execute the report, use the set command:

1> set mailReport off

8. Printers

This is the list of printers—one specification per line—to which the report is automatically

sent when it’s executed. In the example, we have used a standard Unix print specification,

but you can use any specification that works for your operating system. You could also

use more sophisticated printer commands, enscript on SUN computers, for example.

If you don’t want the printer list used for a particular report, use the set command:

1> set printReport off

Now that we have completed the specification, look at it as a whole. Notice that the text and

field specification entered line up the way they will appear in the final report. dbView’s report

function offers something close to “what you see is what you get” kind of formatting.

To run the report, we enter the command:

1> run report mission.rpt

In this example we’ve seen:

• The sections of dbView’s report.

• How a report is formatted using the different sections.

• The use of field specifications and “boiler plate” to create a multiline report.

• The wrap facility of left justified field specifications.

• The use of the special footer variables $date and $page.

• Page specifications.

• Mail list and printer specifications.

19.1.2 The Report planets.rpt

The next example uses the planets table to illustrate some advanced reporting features. As in

the last example, we’ll first run the report and then show the specification that created the it.

This report will use a macro command in place of an SQL statement. Since we want the

macro’s comment to appear at the time we run the report, verbose is set to “on”.

Also, we’ll retrieve numbers into a right justified character field as well as into numeric format

fields that used the “#” character to designate the placement of integer and real numbers
110 — Defining and Running Reports

Tutorial
returned by a query.

We control the precision and numeric style of numbers returned in character fields with the set

commands the set doublePrecision, set singlePrecision and set reals. Before we run the report,

we’ll make settings used by the report.

1> set verbose on

1> set doublePrecision 4

1> set reals g

1> run report planets.rpt

The macro ‘planetList’ retrieves information about the

planets supplied as a list at the prompt. The list

should be formatted like the following example:

 ‘Jupiter’, ‘Saturn’, ‘Venus’

planets [‘Jupiter’, ‘Saturn’, ‘Earth’, ‘Venus’]:

Since the report contains a macro and verbose is set to “on”, dbView displays the macro’s com-

ment when the report is run. In our example, we have accepted the current session’s default

value for the prompt planets. Before we look at the report, we’ll show the macro that was used

as part of this report:

1> set verbose on

1> show macro planetList

- planetList

---Command

print “The macro ‘planetList’ retrieves information about the”

print “planets supplied as a list at the prompt. The list”

print “should be formatted like the following example:”

print “ ‘Jupiter’, ‘Saturn’, ‘Venus’”

select number, name, lgtYrsFromSun, hrsPerRotation, yrsPerRev

from planets

where name in ($planets)

order by number

go

On the next page we’ll show the output of the macro and then that of the report.
Defining and Running Reports — 111

Tutorial
The results retrieved using the macro planetList:

The same results retrieved using the report planets that calls the macro planetList

number

name

lgtYrsFromSun

hrsPerRotation

yrsPerRev

2 Venus 1.142e-05 NULL 0.616

3 Earth 1.585e-05 24.0 1.00

5 Jupiter 8.234e-05 10.0 12.3

6 Saturn 0.0001510 10.3 29.0

(4 row(s) affected)

 P l a n e t L i s t

Num. Name Light Years From Earth Hours Years Per
 The Sun Per Rotation Revolution
____ ____________ ______________ _____________ ____________
 2 Venus 1.142e-05 NULL 0.62
 3 Earth 1.585e-05 24.000 1.00
 5 Jupiter 8.234e-05 10.021 12.34
 6 Saturn 0.0001510 10.273 29.02

Mon Jun 07 16:07:19 1993 -1-

Table 4: The Formatted Report
112 — Defining and Running Reports

Tutorial
The specification for the report looks like this:

---Database command:

planetList

go

---Report title:

 P l a n e t L i s t

go

---Field header:

Num. Name Light Years From Earth Hours Years Per

 The Sun Per Rotation Revolution

____ ____________ ______________ _____________ ____________

go

---Field format:

<<<<<<<<<<<< >>>>>>>>>>>>>> ########.### ####.##

go

---Footer:

$longdate -$page-

go

---Page length [66]:

20

go

---Mail to:

go

---Printers:

go

---End.

1. Database command

We’ve supplied the name of the macro planetList instead of an SQL or stored procedure

statement in this section.

2. Report Title

We have again included a multiline header for this report.

3. Field header

In the last example report, we didn’t use the Field header section. Here we have expanded

the table’s column names into a format that more clearly describes the values in each col-

umn. If this report had been more than one page long, the field headers would have been

repeated at the top of each page in the report.

4. Field format
Defining and Running Reports — 113

Tutorial
The Num. field uses the number format to align numbers in a right justified column.

The Light Years From The Sun column returns a double precision number into a right justi-

fied text field. Since it’s text, this field uses the dbView set commands: set reals g and set
doublePrecision 4. Notice how this format allows you to return mixed decimal and scientific

notation in a single field.

The third field is double precision like the second, but it has its own specific number for-

mat. Since it’s a number format, it ignores the values for the set commands. It specifies

three digits to the right of the decimal point and that’s what we see, even though the value

for set doublePrecision is 4. (The set commands only effect character format fields.) The dec-

imal number format also forces the numbers to align on the decimal point.

The third field also contains a NULL value, which is printed as such.

The last field is like the third field except that it is a single precision number and has a

specification for two digits to the right of the decimal point. For reports, you can specify

the precision for individual real number fields, which is not the case for data retrieved

directly by dbView.

5. Footer

The left side of the footer begins with a line that separates the report’s body from the

footer. The next line in the footer includes the special footer variables $longdate and $page.

As far as possible, dbView report specifications show you the final look of the report. But,

because the special variables are expanded when the report is generated, this is not possi-

ble for the footer section when special variables are included. Trial-and-error is the only

way to get the alignment you want in this case.

6. Page length [66]

We have set the page size to 20 to give you some idea of what a full page would look like.

Notice the space between the last row and the page footer.

7. Mail to

We have not included a mailing list for this report. We simply supplied the “go” termina-

tor to end this section of the report.

8. Printers

We have not included a printer list for this report.

In this report we have looked at the following additional capabilities of the report function:

• The use of macros in reports.

• Number formats using both character and number format specifications to change the

representation of the numbers.

• The interaction of the set commands and the right justified character format when num-
114 — Defining and Running Reports

Tutorial
bers are returned into such a field.

• The use of multiple lines in the footer of a report and the special variable $longdate.

19.2 Summarizing dbView’s Report Writing Capabilities

Now that you’ve seen a couple of sample reports, we summarized the report functions capa-

bilities and restrictions so you can begin creating your own reports.

• Each section of a report specification is terminated with dbView’s “go” terminator. If a

section is left blank—it only contains a line with a “go” terminator, the section is not used

in the report.

• The Database command section can contain an SQL SELECT statement, a stored proce-

dure or a dbView macro command.

• The report only formats data returned as a single table of information; however, queries

producing tabular results can include joins, nested selects, group bys, etc.

• All of the format sections can contain multiple format lines.

• The Field format section can contain both boiler plate and field format specifications.

• Attributes in the database query map to field specifications. The mapping starts with the

first attribute mapping to the first field specification, starting at the upper right of the field

specification section.

• The number of characters in a format specification is the maximum number of characters

used by a retrieved value. In the case of left justified text, the line will be wrapped if the

value is larger than the field.

• You can include the current date, date and time and page number in the footer section of a

report using the special variables.

• By default a report contains 66 lines, but you set the number yourself.

• You can include a list of eMail addresses and printers to be used when the report is gener-

ated. Once specified in a report, these options can be suppressed using the set mailReport
and set printReport commands.

• Reports are saved as files that are read into dbView when you edit or run a report.

19.2.1 Report Functions

• report <file name> [<history number>]—Create a new report.

• edit report <file name>—Edit an existing report.

• run report <file name> [<report name>[—Run the report whose specification is in the named
Defining and Running Reports — 115

Tutorial
file. If a report name is supplied, write the report to a file by that name.

19.2.2 Formatting Character Strings

There are two character formats for reports which are described in the following table:

19.2.3 Formatting Numbers

Numbers can be formatted either as converted character strings or directly as numbers using

the following format specifications:

Format Examples Description

<<<<<<<<<< Jupiter

1234

Mar 11 1993 8:42:02:120AM

The Planet Jupiter, the major

target for the Galileo

Mission

Left justified character strings. Any data

type can be represented as a string of char-

acters, including dates and numbers. If a

value does not fit in a left justified charac-

ter specification the string is wrapped.

Wrapping occurs on word boundaries if

the word is shorter than the specification’s

allotted number of characters.

>>>>>>>>>> Jupiter

1234

Mar 11 1993 8:42:02:120AM

Right justified strings. Any data type can

be represented as a string of characters,

including dates and numbers. Right justi-

fied strings do not wrap. If there is not

enough space for the string, the specifica-

tion is filled with stars—**********.

Format Examples Description

1234 Integers returned in number format. The values are

right justified.

####.### 1234.123

12.123

1234.123

Real numbers returned in decimal number format.

Decimal points line-up in this format. Also, the set
commands have no effect on these formats.

>>>>>>>>> 1234

1234.123

0.1234E-6

Numbers returned in right justified character format.

The command set real, set singlePrecision and set dou-

blePrecision can be used to control number format as a

character string.

Note: You must supply enough characters in the for-

mat string to accommodate the “E” notation if you

have specified its use.
116 — Defining and Running Reports

Tutorial
Numbers returned in character format fields are effected by the following dbView set com-

mands:

set reals { f | e | E | g | G }

set singlePrecision { on | off }

set doublePrecision { on | off }

19.2.4 Special Variables Used In Report Footers

The following table summarizes the special variables that can be used in report footers.

19.2.5 Options For Report Printing and Mailing

If your report contains a print command or a mail list, the report will execute these subcom-

mands by default. You can turn-off either one or both using the following commands:

set printReport {on | off}

set mailReport {on | off}

Since these are set commands, their values are remembered by dbView from session to ses-

sion—the are saved in the .dbView file—so turn them on again when you want them to take

effect.

When you run a report that has a mail list or printer list associated with it, dbView will tell

you whether or not it performed either of these functions. (It won’t perform the functions

<<<<<<<<<< 1234

1234.123

0.1234E-6

Numbers returned in left justified character format

The commands set real, set singlePrecision and set

doublePrecision can be used to control number for-

mats as a character string.

Note: You must supply enough characters in the for-

mat string to accommodate the “E” notation if you

have specified its use.

Special

Variable

Examples

$date Fri Jun 04, 93

$longdate Mon Jun 07 16:07:19 1993

$page 1 ($page)

-1- (-$page-)

Page: 1 (Page: $page)

Format Examples Description
Defining and Running Reports — 117

Tutorial
even when their defined in your report if you’ve set the mailReport or printReport commands to

“off”.) The messages you’ll see are:

“Report mailed” or “Report not mailed; mailReport setting is turned off”

“Report sent to the printer” or “Report not printed; printReport setting is turned off”.

These messages are only printed for those cases where a mail or printer list was specified.

19.2.6 More About The Print Section

When you include a print specification in a report, dbView concatenates the name of the file to

print at the end of the print command. The file printed by dbView is the name of the report if you

included one, or a temporary file that dbView creates for this purpose. If a temporary file is

used, it’s deleted once the file has been printed.

If you are using a print command that must include a file specification within the command, you

can’t use the report’s print specification; but there is an alternative:

1. Open a data file just before you run the report.

2. Run the report.

3. Close the data file.

4. Execute your print command.

5. Remove the data file containing the report.

All of these operations can be placed in a dbView script file and executes by a single script
command. We show an example of this procedure when we describe scripts, see "Generating
And Printing A Report" on page 126.

19.2.7 Cancelling A Report Specification Command

When you begin a report specification, dbView opens a file for the specification. If you abort

the session by using <control-c>, the file is closed and removed.

19.2.8 Error You May Encounter When Using Report Commands

1. If you supply the report command the name of a file that already exists, the command is

aborted.

1> report mission.rpt

 File mission.rpt already exists. Report definition

 aborted.

2. The number of field format specifications must match the number of attributes returned

by the query statement. If there is a mismatch, dbView will return an error message.
118 — Defining and Running Reports

Tutorial
If there are fewer format specifications than query attributes, dbView displays an error

message:

1> run report example.rpt

 Report specified 1 field format(s).

 There were 2 specified in your database statement.

If there are more format specifications than query attributes, the error message is like:

1> run report example.rpt

 Report specified 3 field format(s).

 There were 2 specified in your database statement.

3. If you have altered the sections of a report or entered a specification that dbView does not

understand, the run report command is aborted and you’re given an error message.

1> run report bad.rpt

 Invalid report file. Could not find section:

 ---Field format:

4. If a right justified “>” or numeric “#” field specification is not large enough for a value, the

value is not printed. Instead, the field is filled with star characters “*”.

5. If the query associated with a report fails, you will see an error message following any

 P l a n e t L i s t

Num. Name Light Years From Earth Hours Years Per
 The Sun Per Rotation Revolution
____ ____________ ______________ _____________ ____________
 2 Venus **** NULL 0.62
 3 Earth **** ***** 1.00
 5 Jupiter **** ***** 12.34
 6 Saturn **** ***** 29.02

Tue Jun 08 16:45:24 1993 -1-

Table 5: The Formatted Report With Numeric Overflow
Defining and Running Reports — 119

Tutorial
header information that would appear in the report. In the following example, the signifi-

cant error message returned by the database server is set in italic type:

1> run report bad.rpt

 MISSION REPORT

MDMS DBS WARNING busstop::dbView Tue Jun 8 16:38:03 1993

(Db: jar, MsgNo: 102, Svr: 15, St: 1)

Incorrect syntax near 'missions'.

 Report specified 5 field format(s).

 There was 0 specified in your database statement.

19.3 Using The History List For Report Generation

When you create a report, you can use a query command that is in dbView’s history list by fol-

lowing the name of the report with the history number (see "The History List" on page 63 for

more on the history list). This is a very good approach because it insures that the command

you are going to use already works.

In the following example, we have included the 9th command from the history list as the

report command:

1> report mission.report 9

When you now press <return>, you will see something like this:

---Database command:

1> select mission, scId

2> from missions

3> order by mission

where the SELECT statement was the 9th command in the history list.

19.4 Hints For Creating Reports

In this section we provide some hints that may make creating reports easier for you.

• Use the show db command to get the list of attributes and data types for the tables you

want to include in your report. You can save this information to a file with the open logFile
command and then print out the file.

• Create your query statement before defining a report. Either make a macro or get the

statement from the history list.

• If you want to include comments in your report that will appear at run time, use a macro
120 — Defining and Running Reports

Tutorial
and include the comments in the macro.

• Use a common suffix for your reports and put them all in one directory. Then make a

macro something like this:

1> macro showReports

---Command

1> escape ls *.rpt 1

2> go

---Comment

1> dbView reports .

2> go

Then you can get a list of your reports by executing the command:

1> showReports

dbView reports.

mission.rpt planets.rpt

• Use the report command to enter all of the information needed in the different sections of a

report, but don’t worry about placement of each field. Then used edit report to adjust the

placement of boiler plate and field specifications.

• Take the time to make sure that the number of attributes in the database query matches

the number of format specifications in the Field format section of the report specification.

• If your report depends on the values of set commands or the definitions of macros, put all

of the commands needed for the report, including the run report command, in a script file

and run that when you want to generate a report.

• If you want to run multiple reports as a single document with each report beginning on a

separate page, put all of the report commands in a script file. When they are printed, the

output will look like a single report. If, on the other hand, you want all of the information

to flow across page boundaries, open a data file—open dataFile <file name>—and dbView

will write the output to the file. Then close it and print it with command in the script file.

1 The example uses the Unix list file command (ls *.rpt). Another operating system would require the

equivalent command.
Defining and Running Reports — 121

Tutorial
20 The Script Command

dbView can execute a set of commands from a file using the script command. The commands

can be a mixture of dbView and SQL commands. The general rule is: if you can execute it

interactively, you can execute it from a script file. Commands saved using the open command-
File command can also be used as scripts.

The syntax for the command is:

script <command file name>

and an actual command would look like this:

1> script example.script

You can also use macro to customize script commands:

1> macro example
---Command

1> script example.script
2> done

1> example

Script can be used to:

1. Condense a set of commands by placing them in a file and then running the file as a script.

2. Execute a set of SQL commands. If you want to create a database schema, put the CREATE

commands in a script.

3. Execute a set of reports. If you are running multiple reports, put the reports into a script

file. Also, if the reports depend on set command values and macros, include those com-

mands in the same file.

4. Exporting data. If you commonly retrieve data and store it in a file and then call another

program to read the file, you can put these commands in a script. (Call the other program

using dbView’s escape command.)

5. Archiving or moving database sets. You can retrieve data using dbView’s export format
and write the data to a file. Then, using the escape command you can invoke a database

load utility to insert the data into another database.

6. Run demonstrations. You can but a set of SQL commands in a script file and then run it as

a “demo”.
122 — The Script Command

Tutorial
20.1 Some Characteristics Of Scripts

20.1.1 Scripts Can Be Nested

A script file can execute other script files. That is, within a script file, you can include a com-

mand to run another script file. For example, if you have a set of scripts each one of which

down-loads data from a database table, you can create one script that calls all of the others;

and in that way, you can down-load a set of tables with a single command. As requirements

change, you can add or delete entries from the master script file.

20.1.2 Putting Comments In A Script File

dbView considers all lines in a script file to be commands. You can enter comments—internal

documentation within the script file not to be executed—by following any comment lines with

a dbView reset command. For example:

1> File: dbView.sql

2>

3> This script file creates all of the database objects

4> used to create the examples in the "dbView Tutorial”

5> reset

1>

As we add text, dbView starts to build a multi-line command; but at some point, we want the

text to be ignored, because its meant to be a comment. We signal dbView to ignore all previous

input using the reset command. Once we’ve done that, we’re free to start a new command.

20.1.3 Pausing In A Running Script

If you have a set of SQL commands in a script, they are executed as a batch; as soon as one

completes, the next one executes. You could stop the output using the set page command, but

this causes dbView to stop on page boundaries. If you want to stop at the beginning of the

SQL command so you can see what will be done next, use the leslie command1. The script will

pause as soon as it reads the command and wait for you to hit <return> before continuing.

1> script leslie.script

 Running script file leslie.script.

1> select id, scId, objective

2> from missions

3> where mission = "GLL"

4> go

1 The command is named after Leslie Pieri who asked for this capability.
The Script Command — 123

Tutorial
id scId objective

----------- ----------- ------------------------------

 2 35 Jupiter

(1 row(s) affected)

1> ***

2> Example using the "leslie" command to pause

3> in a script file.

4> ***

5> reset

1> leslie

Please type <return> to continue: ← The script pauses here

1> select id, scId, objective

2> from missions

3> where mission = "Cassini"

4> go

id scId objective

----------- ----------- ------------------------------

 1 72 Saturn

(1 row(s) affected)

1> End of script file leslie.script.

20.1.4 Rules To Remember When Running Scripts

1. All commands requiring a “go” terminator on the command line also require the termina-

tor in the script file.

2. If you have a file open—command, data or log file—before you begin running a script;

and then you open another file of the same type in the script without first closing the open

file, dbView will give you a warning message. The new file will not be opened, but the

script will continue to run.

3. Any changes made to the dbView environment in a script file remain once the script file

has completed execution. Changes are accumulate whether you enter them interactively

or by using a script. For example, if you executed the command: set timer on in a script file;

and then followed that by executing a SQL query interactively, dbView would display

timing results for the query.
124 — The Script Command

Tutorial
20.2 Example Script Files

To give you an idea of how scripts can be used, we’ll look at three examples:

1. Loading SQL command into a database.

2. Generating a report where set and macro commands are used.

3. Exporting a data set and loading it into another database.

20.2.1 Loading SQL commands

Here’s the beginning of the file that creates the database objects used to create the examples in

this tutorial. The complete file can be found in Appendix A of this document. The file was exe-

cuted using the script command:

1> script dbView.sql

**

**

** File: dbView.sql

**

** Function: Creates objects used for examples in the dbView Tutorial.

**

** Creator: J. Rector

**

** Created: March, 1993

**

**

reset1

drop table missions

drop table planets

drop view missionObjective

go

drop procedure showMissionObjective

drop procedure showMissions

drop procedure showPlanets

go

create table missions

(

 id id,

 mission shortName,

1 Placing a reset command following the comment also allows us to run this script using Sybase’s com-

mand line utility isql.
The Script Command — 125

Tutorial
 scId id,

 objective shortName null,

 flying flag,

 description description null,

 created timeOfDay

)

go

20.2.2 Generating And Printing A Report

In this example, we run a script that generates the “planets” report, see "The Report planets.rpt"
on page 110, where this report is discussed.

The script used to create the report sets dbView parameters, includes a macro file used by the

report and then runs the report. The script file includes a file header which we treat as a com-

ment. We’ve added a reset command following the file header to clear the command buffer so

the comment is not included as part of the first command. This is the general way to handle

comments in script files.

**

**

** File: planets.script

**

** Function: Set up the environment and then

** run the report "planets.rpt".

**

**

reset ← reset the command buffer after a comment

** Define the values for the set commands

** needed by the report.

reset

set reals g

set doublePrecision 4

set verbose on

set mailReport off

set printReport off

** Include the macro file example.macros.

** It contains the macro planetList used

** in the report.

reset

include macro example.macro

** Run the report.

reset

run report planets.rpt planets.out

Now we can run the report using the script file in which these commands are saves:
126 — The Script Command

Tutorial
1> script planets.script

The report sets up the dbView environment for the report, setting numeric specifications for

real numbers, turning on verbose so the macro comment in the report will be seen, and sup-

pressing any mail or print commands in the report. The script next includes the file of macros

used by reports. Then the report is run and the output sent to the file planets.out .

20.2.3 Copying A Database Tables Contents

This report retrieves all of the data from a database table from one Sybase database server and

loads it into a copy of the table on another Sybase database server. The data is retrieved by

dbView and loaded by Sybase’s utility program bcp. The illustration below shows the three

machine environments and the location of each of the processes and files involved.

This script that makes the transfer uses global variables and macros that generalize the script

so any table can be copied from one server to the other. The illustration shows that the data-

base table must exists on in both databases—the script only copies the contents of one table

into another, it does not make a copy of the table definition itself.

We’ll describe the contents of the script in some detail because it brings together many of

dbView’s commands to solve a particular problem. The script file appears on the following

pages.

Here’s what the script file does:

Sybase
Dataserver

bcp dbView

database table

loadData.script
temporary file contain
exported data rows

load data set

invoked from
dbView script

Local system where dbView is running.

A remote database server

Sybase
Dataserver

retrieve data set

database table

A remote database server
The Script Command — 127

Tutorial
1. The first command in the script, set displayScriptCommands off, suppresses the display of

most of the commands in the script with the exception of:

• Macro comments

• Macro local variable prompts

• Messages returned to dbView from the operating system.

You can see from the script that there are many commands in it that we don’t need to see

when we run it. Setting displayScriptCommands to “off” will allow us to design the script in

such a way that it will have an informative look when it’s run.

2. Next we have the documentation of the file treated as a comment within the script file. We

create a comment like any other information to be accepted by dbView’s command buffer,

but we end it with the reset command so that it’s not executed. We arbitrarily place two

stars in front of each comment line so there’s no chance that dbView will interpret some-

thing we type in as a command.

3. The next set of commands in the script are macros and global variable definitions that will

be used by the script. (We could have put these commands in a macro file and included

the macro file in the script.)

The first macro, getTargetObject, is used to define the value for the global variable object.
We place the global variable definition in a macro so we’ll be prompted for its value when

we run the script.

We next use that global variable to create another one named fileName. We’ll use this glo-

bal variable to manage the temporary file containing the data bcp will read.

The next few macros create commands to: open a temporary data file, delete the file and

select all of the data from the table defined by the global variable object. This set of global

variables and macro examples was discussed earlier, see "Referencing Global Variables In
Macros" on page 93.

We’ve purposely added comments to our macros so they will appear when we run the

script—remember, we’re going to run it having set displayScriptCommands to “off” and ver-
bose to “on”, so we’ll see the macros’ comments and prompts, but little else.

4. The last macro we define:

macro bcpCommand

escape bcp example.dbo.$$object in $$fileName -c -U sa -P

$password -S MDM1

go

Loading data into the "example" database

using bcp.

go

warrants its own description. The line is bold type is the macro command. It escapes to
128 — The Script Command

Tutorial
the operating system and executes the Sybase bcp utility program that loads the data from

the file defined by $$fileName into the table defined by $$object. The command also

includes the special local variable $password. When this macro runs, we’ll be prompted for

the password that bcp needs for the data server where the data will be loaded. The pass-

word won’t be echoed because that is the nature of this special local variable—see "The
Special Local Variable $password" on page 84.

5. We next set the environment:

• Turn on verbose so macro comments will appear.

• Set displayRows off so the rows retrieved will not be written to the screen.

• Set header off so the data file read by bcp will not contain the table header.

• Set the endField and endRow values explicitly so bcp correctly interprets the end

of fields and rows in the file.

• Set the format to export so the field and row delimiter are included in the out-

put.

6. Now the work begins:

• The macro getTargetTable is executed to assign the name of the table to copy to

the global variable object. (Since the global variable fileName is already

defined, dbView knows how to construct its value using the value of object at

run time.)

• We delete any existing copy of the temporary file we will use with the macro

deleteDataFile. (The temporary file name is defined by the global variable file-
Name.)

• Open the temporary data file.

• Select the data. (Since there’s a data file open, the rows returned will be writ-

ten to that file. And since we’re in export format, the file will be readable by

bcp.)

• Close the data file.

At this point the data has been retrieved and written to the data file in the export format

we defined.

7. Next we execute the macro bcpCommand described above. This loads the data from the

temporary file into a table by the same name in the database example .

8. Once the data is loaded, we:

• Reset the dbView environment for interactive use.

• Delete the data file
The Script Command — 129

Tutorial
• Remove the macros and global variables
130 — The Script Command

Tutorial
set displayScriptCommands off

**

** File: loadData.script

**

** Function: Retrieve the rows from a table and

** load it into the database named "example" for user "dbo"

** using the Sybase utility "bcp" (bulk copy).

**

**

reset

** Define a macro that prompt for the name of the file

** to use when saving and loading data. The file name

** is stored as a global variable and used in macros

** that open the data file and load the database.

reset

macro getTargetTable

global object $targetTable

go

Enter the name of the table whose contents are to be

copied.

go

** Use the value of the global variable "object" concatenated

** with the string "Tmp" to define the global variable

** "fileName". (We use the escape character '\' to separate

** the global variable name $$object from the string "Tmp".)

reset

global fileName $$object\Tmp

** Create a macro to open the data file. A macro is

** used so the global variable holding the name of

** the file can be expanded into the "open dataFile"

** command.

reset

macro openDataFile

open dataFile $$fileName

go

go

** Create a macro to delete the data file.

reset

macro deleteDataFile

escape rm $$fileName
The Script Command — 131

Tutorial
go

Deleting old data file if it exist.

go

** Create a macro to select all fields from a table.

** We use the global variable $$targetTable as the

** name of the table in the SELECT statement.

reset

macro selectData

select *

from $$object

go

Selecting data from target table.

go

** Create a macro for the bcp command. It will prompt for

** the Sybase password needed to load the data. The macro

** also contains the global variable that contains the

** name of the file to load.

reset

macro bcpCommand

escape bcp example.dbo.$$object in $$fileName -c -U sa -P

$password -S MDM1

go

Loading data into the "example" database

using bcp.

go

** Set verbose on so macro comments will appear.

** Set the dbView environment so only rows of data

** will be written to the file. Set up for export.

reset

set verbose on

set displayRows off

reset

set header off

set endField \t

set endRow \n

set format export

** Get the table name.

** Delete any old copy of the file. (Don't use this

** unless you confident that this will not lead to

** to some untoward event!)

** Open the file.

** Retrieve the data.
132 — The Script Command

Tutorial
** Close the file.

reset

getTargetTable

deleteDataFile

openDataFile

selectData

close dataFile

** Now load the data into the "example" database.

** The bcp command is in a macro that will prompt for the

** password. To execute the bcp command, we "escape" it.

reset

bcpCommand

** Reset the environement for normal interactive use.

** Remove temporary data file.

** Remove the macros and globals we've created.

reset

set verbose off

set displayRows on

set header on

set format table

deleteDataFile

remove macro getTargetTable

remove macro openDataFile

remove macro deleteDataFile

remove macro selectData

remove global object

remove global fileName
The Script Command — 133

Tutorial
Since we want to run this script often, we’ll shorten the command by including it in a macro:

1> macro loadData
---Command

1> script loadData.script
2> done

Normally, you can’t include a macro within a macro —we’re calling a script that includes mac-

ros from the macro “loadData”—but in this case it’s all right. dbView knows how to handle

this special case.

Now we execute the macro which invokes the script and dbView displays the following:

1> loadData ← this is the macro command

 Running script file loadData.script.

1> set displayScriptCommands off

Enter the name of the table whose contents are to be

copied.

targetTable []: missions

Deleting old data file if it exist.

missionsTmp: No such file or directory

Selecting data from target table.

Loading data into the "example" database

using bcp.

password: ← the password is not echoed

Starting copy...

4 rows copied.

Clock Time (ms.): total = 1 Avg = 0 (4000.00 rows per

sec.)

 End of script file loadData.script.
134 — The Script Command

Tutorial
21 dbView’s Batch Mode

dbView can also be used in batch mode. In this mode, dbView never begins an interactive ses-

sion; instead it executes the command placed in a script file. The name of the script file is sup-

plied as a command line parameter to dbView. The syntax is:

dbView <script file>

For example, the following line, specified at the operating system prompt, would execute the

contents of the script file nightlyReports.script :

% dbView nightlyReports.script

Since there is no way to supply dbView with the passwords to database servers you access

from the script, this mode only works if you system supports the JPL password server. The

function of the password server is beyond the scope of this guide. To find out more about it

ask you DBA or look at the MDMS Mosaic Home Page:

http://www-mipl/mdms/MDMS.html

When using the password server, you must have the following defined:

1. You must be a known user with the password servers Kerberos domain.

2. Your database server user names and passwords must be defined in the password server.

3. You must have a valid Kerberos ticket, granted when you successfully execute the Ker-

beros kinit utility.

You can also execute dbView in batch mode as a background process. To do this the previous

command becomes:

% dbView nightlyReports.script &

Ask you system administrator for help in this area if you’re unfamiliar with background pro-

cessing and its uses.
dbView’s Batch Mode — 135

Tutorial
22 Error Messages

Most dbView error messages are printed as text without a header; but when the error comes

from Sybase, you’ll get an error message with a banner. In this section, we’ll describe this spe-

cial class of messages.

22.1 What’s In An Error Message?

An error message begins with a banner line, optionally followed by a Sybase error number

line, and ending with the message. This may seem like a lot of information to you, but it

comes in handy if you need to report a bug. A developer has a much better chance of under-

standing what went wrong if this information is included. And, it should also tell you what

went wrong. Let’s look at each line in an error message to see what information it contains.

While are discussion will cover all of the variations you can expect, we include an example for

reference. In the example, we try to query for all the information in the table “noTable”, which

does not exist in the database.

1> select * from noTable

2> go

MDMS DBS WARNING milano::dbView Wed Jun 23 16:52:15 1993

(Db: master, MsgNo: 208, Svr: 16, St: 1)

Invalid object name 'noTable'.

22.1.1 The Banner Line

From the example

MDMS DBS WARNING milano::dbView Wed Jun 23 16:52:15 1993

1. The acronym of the group responsible for the message. In dbView this will always be

MDMS—the MIPS Data Management Subsection.

2. The type of error

• DBSERVER—The message was generated by a database server.

• DBLIB—The message was generated by the Sybase interface library.

• PROGRAM—The message was generated in program code; in this case

dbView’s code.

3. The severity of the error:

• INFORMATION—Not an error at all; just an informative message.

• WARNING—The message is a warning.
136 — Error Messages

Tutorial
• ERROR—More server than a warning, something did not execute correctly.

• FATAL—More server than an error. You should never see this. If you do, it

indicates that the program can not proceed.

4. The next two words are the name of the client machine and the program. The two are sep-

arated by a double colon. In the example above, the client machine is named milano and

the program is dbView.

5. The last item on the banner line is the date and time of the error.

22.1.2 The Sybase Error Number

From the example:

(Db: master, MsgNo: 208, Svr: 16, St: 1)

If the error came from Sybase there will be an additional line between the banner and the error

message. For an error returned by a server (DBSERVER), the line contains the following infor-

mation:

1. The name of the database if you are connected to the server.

2. The Sybase database server message number (MsgNo).

3. The severity (Svr) of the error.

4. The state (St) of the server.

If the error comes from the Sybase interface library (DBLIB), the line contains the following

information:

1. The Open Client/C error number.

2. The severity (Svr) of the error.

Generally you don’t need to be concerned with the information on this line, but the Sybase

documentation contains information about all errors if you are interested, Always include the

information in this line if you are reporting a bug. The developer getting your report will want

it.

22.1.3 The Message

From the example:

Invalid object name 'noTable'.

The last item in an error message is the text of the message itself. You want to read this; it tells

you the nature of the error.
Error Messages — 137

Tutorial
Often you will receive more than one error message. Don’t get unsettled by this. In a client/

server environment, many pieces of software may be involved in any action you take. Multi-

ple error messages just show the chain of services that reacted to your command. The first

message is usually the important one for you. By reading it, you should understand the source

of the error. If you don’t, look at any other messages returned.

When reporting a suspected bug, always include all of the error messages generated by the

command. You have a much better chance of getting fast results if you do this.

22.2 Some Common Login Errors

Connecting to a database server from dbView should be easy; but when you can’t make a con-

nection, it’s very frustrating, so in this section we’ll cover some common login errors. When an

error occurs, dbView sends you an error message. The message usually has two or three lines

to it. For now, just look at the last line of the message. (For an explanation of error message

syntax, see "Error Messages" on page 136.)

In the following examples, we’ve highlighted the important part of each message in bold type.

22.2.1 Incorrect User Name Or Password

userName [franklin]: adams

password:

server [CATALOGDBS]:

database [catalog]:

MDMS DBS WARNING milano::General Delivery Tue Mar 2 10:35:40

1993

(Db: , MsgNo: 4002, Svr: 14, St: 1)

Login failed.

MDMS DBLIB WARNING milano::General Delivery Tue Mar 2 10:35:40

1993

MsgNo: 20014, Svr: 2

Login incorrect.

• Response—You’ve probably supplied an incorrect login value. Use the connect command

to enter the correct values. If you don’t have a user name and password, you’ll need to get

one from your database administrator.

22.2.2 Incorrect Server Name Or Server Name Not In Interfaces File

userName [franklin]:

password:

server [CATALOGDBS]: junk

database [catalog]:
138 — Error Messages

Tutorial
MDMS DBLIB WARNING milano::General Delivery Tue Mar 2 10:41:08

1993

MsgNo: 20012, Svr: 2

Server name not found in interface file.

MDMS PROGRAM ERROR milano::dbView Tue Mar 2 10:41:08 1993

dbopen error for SQL command: junk server connection

• Response—You may have misspelled the server name. Use the connect command to

enter the correct value. Or, you may have a problem with your Sybase environment, refer

to the Installation Guide. In the latter case, see if the server name is in the interfaces file.

If not, contact your database administrator for assistance.

22.2.3 Incorrect Database Name

userName [franklin]:

password:

server [CATALOGDBS]:

database [catalog]: catlog

MDMS DBS WARNING milano::dbView Tue Mar 2 10:43:56 1993

(Db: catalog, MsgNo: 911, Svr: 11, St: 2)

Attempt to locate entry in sysdatabases for database 'catlog'

by name failed - no entry found under that name. Make sure that

name is entered properly.

MDMS PROGRAM WARNING milano::dbView Tue Mar 2 10:43:56 1993

dbuse error for SQL command: catlog database

• Response—You may have misspelled the database name; we typed “catlog” when we

wanted “catalog” in the example. At this point Sybase should have placed you in your

default database. Execute the command “sp_who” to find out where you are. If you need

a list of database names for the server, execute the command “sp_helpdb” and then con-

nect to the database you want with the command “use <database name>” followed on the

next line by the command terminator “go”.

22.2.4 Server Is Not Running

userName [franklin]:

password:

server [CATALOGDBS]:

database [catalog]:

MDMS DBLIB MSGFAILED milano::General Delivery Wed Mar 17

11:05:04 1993
Error Messages — 139

Tutorial
MsgNo: 20009, Svr: 9

Unable to connect: SQL Server is unavailable or does not exist.

MDMS PROGRAM ERROR milano::dbview Wed Mar 17 11:05:04 1993

dbopen error for SQL command: catalog server connection

• Response—The server is not running so you can not connect to it at this time. Contact

your database administrator to find out when the server will be back on-line.

22.2.5 Can’t Reach Machine Named In Interfaces File

This is an example where the server name is correct, but the machine name associated with the

server named in the interfaces file can’t be reached. You will experience a delay of about a

minute if this error occurs because dbView is attempting to make the connection and only

gives up after the time-out period expires.

userName [franklin]:

password:

server [CATALOGDBS]:

database [catalog]:

MDMS DBLIB MSGFAILED milano::General Delivery Tue Mar 2

10:53:21 1993

MsgNo: 20013, Svr: 9

Unknown host machine name.

MDMS PROGRAM ERROR milano::dbView Tue Mar 2 10:53:21 1993

dbopen error for SQL command: CATALOGDBS server connection

• Response—The interfaces file you are using is incorrect. Contact your database

administrator or system administrator who will correct the error.
140 — Error Messages

Database Bibliography
Database Bibliography

The books and manuals listed here offer an introduction to relational databases with special

emphasis on Sybase. The list is by no means complete; but many of the books have additional

references that will lead you to more specialized topics.

If you are new to databases — at least databases that use SQL — and your main goal is to

learn how to query a database, look at the first couple of references in the section “The SQL

Language”.

23 General Relational Database References

The books in this section are valuable if you want to learn more about relational database con-

cepts. More specific topics, especially those related to the SQL language and Sybase, are cov-

ered in the following sections.

An Introduction To Database Systems; C. J. Date; Addison–Wesley; Volume I.

One of the standard academic texts on databases. This book is a good introduction for people
who must design or understand relation database schemas.

Relational Databases: Selected Writings; C. J. Date; Addison–Wesley.

A collections of papers on relational database design issues by one of the prominent members of
the field.

Principles Of Database And Knowledge–Base Systems; Jeffrey D. Ullman; Volumes I

and II.

Covers a wide range of database topics in depth; many of them beyond the basics description of
relational databases. The approach is formal, with lots of mathematical proofs.

Database Security And Integrity; E. B. Fernandex, R. C. Summers, C. Wood; Addison–

Wesley.

An older text on database security. Covers a lot of the issues, even if some of the solutions are
dated. New topics like C2 and B2 level secure serves and Kerberos authentication are not cov-
ered.

24 The SQL Language

If you need to know enough about databases to query one for data, then these are the books
General Relational Database References — 141

Database Bibliography
you should consider. The last reference is more specialized than the first two.

There are many other books in the class. Look around at your favorite technical book store,

you may find one you like better.

If you are primarily interested in Sybase, you should also look at the books in the next two sec-

tions.

Learning SQL; Wellesley Software; Prentice Hall; ISBN 0-13-528704-9

An entry level introduction to SQL with exercises. Good for starting on your own with no
prior experience with the language.

A Visual Introduction to SQL; J. Harvey Trimble, Jr. and David Chappell, Wiley, ISBN

0-471-61684-2

An entry level introduction to SQL using diagrams to show the relationship between SQL and
database tables. Another good starter book for someone learning SQL on their own.

The Practical SQL Handbook; Judith S. Bowman, Sandra L. Emerson and Marcy Dar-

novsky; Addison-Wesley; ISBN 0-201-62623-3.

The only introductory SQL book that discusses the Sybase implementation. The examples in
the book use the Sybase example database “pubs”1.

SQL & Relational Basics; Fabian Pascal; M&T Books; ISBN 1-55851-063-X

A good book to read once you’ve understood the very basics of SQL and want to go on to a bet-
ter understanding of relational databases and the application of SQL.

Introduction to SQL; Rick F. van der Lans; Addison–Wesley;

A good introduction to the SQL language with a lots of examples. The examples use a collec-
tion of tables defined in the book.

A Guide to the SQL Standard, 3rd Edition; C. J. Date with Hugh Darwen; Addison

Wesley.

Discusses the SQL/89 and SQL/92 standards. A good book to have if you want to know about
the latest, standardized syntax for SQL. Sybase System 10 adopts the SQL/89 standard along
with Sybase’s extensions to the language, Transact-SQL.

25 Books About Sybase

These books describe the Sybase Database Management System and Sybase’s client/server

architecture. The books discuss the SQL language, but go into other topics as well. These are

valuable to people who need to know more about Sybase than just how to query the database.

The Guide To SQL Server; Aloke Nath; Addison–Wesley.
This book is about the Microsoft implementation of the Sybase SQL Server for PCs; but most of
what is in it applies to any Sybase SQL Server. Good introduction to the topic with only minor

1 The script file that creates the pubs tables in a database is called pubs.sql . Contact the Sybase Data

Manager for a copy of the file.
142 — Books About Sybase

Database Bibliography
PC dependencies discussed.

A Guide To Sybase And SQL Server; D. McGoveran with C. J. Date; Addison–Wesley.

A good introduction to Sybase and the SQL Server. A little more academic than Nath’s book.
Does not cover System 10 topics.

Sybase Architecture and Administration; John Kirkwood and Ellis Horwood; ISBN 0-

13-100330-5.

An introduction to Sybase, its client/server architecture, the Transact-SQL language and
administration of Sybase Database servers. Does not cover System 10 topics.

26 Sybase Manuals

The manuals described in this section are some of the ones supplied by Sybase Corporation

with their products. To buy the books, you must contact Sybase Corporation.

Transact-SQL User’s Guide

This is the best, and most complete, introduction to Sybase’s extended SQL language. The
examples in the guide use the “pubs” database, an example database supplied with the Sybase
SQL Server.

Command Reference Manual.

The definitive reference manual for the Transact-SQL language. Each command is defined and
described individually. This manual is not a tutorial.

Open Client DB-Library/C: Reference Manual.

The description of the Sybase client interface using the C Language. Of particular interest to
programmers who must access a Sybase server.

Sybase Installation And Operations

How to install and configure Sybase software. Of interested only to System and Data Admin-
istrators.

System Administration Guide.

Most things that a Data Administrator needs to know about are covered in this guide.
Sybase Manuals — 143

Database Bibliography
144 — Sybase Manuals

APPENDIX: A

Example Database

This appendix contains the data found in the missions and planets tables used as examples in

the User and Quick Reference Guides. The script that creates these tables and other, associated

objects follows the table listings.

id mission scId objective flying description created

1 Cassini 72 Saturn 0 The Cassini Mission to Sat-

urn

Jun 22 1993

5:58:10:403PM

2 GLL 35 Jupiter 1 The Galileo Mission to

Jupiter

Jun 22 1993

5:58:10:460PM

3 MO 91 Mars 1 The Mars Observer Mis-

sion

Jun 22 1993

5:58:10:476PM

4 VGR 0 1 The Voyager Mission to the

outer solar system

Jun 22 1993

5:58:10:493PM

Figure 1: missions Table

number name lgtYrsFromSun hrsPerRotation yrsPerRev

1 Mercury 6.30786185000e-06 211.284 0.241100

2 Venus 1.14223444000e-05 0.616400

3 Earth 1.58548960000e-05 24.0000 1.00000

4 Mars 2.42085509000e-05 24.6640 1.88200

5 Jupiter 8.23431695000e-05 10.0210 12.3430

6 Saturn 0.000151047719000 10.2730 29.0250

7 Uranus 0.000303459300000 10.8010 84.1100

8 Neptune 0.000475646880000 15.8980 165.592

9 Pluto 0.000662567170200 248.637

Figure 2: planets Table
Appendix A — 145

**
**
** File: dbView.sql
**
** Function: Creates objects used for examples in the dbView User's Guide.
**
** Creator: J. Rector
**
** Created: March, 1993
**
** Owner of objects: dbo
**

reset

**
** DOMAINS
**

reset

sp_addtype name, "varchar(30)"
go
sp_addtype shortName, "varchar(15)"
go
sp_addtype flag, "tinyint"
go
sp_addtype flagArray, int
go
sp_addtype description, "varchar(255)"
go
sp_addtype radian, float
go
sp_addtype tinyId, tinyint
go
sp_addtype id, int
go
sp_addtype timeOfDay, datetime
go

**
** DEFAULTS FOR DOMAINS
**
146 — Appendix A

reset
/*
** DEFAULT
** default_timeOfDay
**
** FUNCTION
** Uses the current database server time as the default.
*/
create default default_timeOfDay as getdate ()
go
exec sp_bindefault default_timeOfDay, timeOfDay
go

**
** RULES FOR DOMAINS
**

reset
/*
** RULE
** rule_zeroOne
**
** FUNCTION
** A boolean function. Value must be 0 or 1. The pair can signify
** binary sets like {no, yes}, {off, on}, {not OK, OK}, {stop, go},
** etc. The values can also be used for logical tests in programming
** languages like C.
*/
create rule rule_zeroOne as @value in (0, 1)
go
sp_bindrule rule_zeroOne, flag
go

**
**
** TABLES
**
**
reset
/*
**
** TABLE
Appendix A — 147

** missions
**
** FUNCTION
** Example spacecraft mission data used for dbView examples.
**
*/
create table missions
(
 id id,
 mission shortName,
 scId id,
 objective shortName null,
 flying flag,
 description description null,
 created timeOfDay
)
go

create unique clustered index missionPK1 on missions (mission)
create index missionFK1 on missions (objective)
go

sp_primarykey missions, mission
go

/*
**
** TABLE
** planets
**
** FUNCTION
** Example table used for dbView examples. Contains information
** about the planets in the Solar System.
**
*/
create table planets
(
 number tinyint,
 name shortName,
 lgtYrsFromSun float,
 hrsPerRotation real null,
 yrsPerRev real null
)
go

create clustered index planetsPK1 on planets (name)
148 — Appendix A

go

sp_primarykey planets, name
go

sp_foreignkey missions, planets, objective
go
sp_commonkey missions, planets, objective, name
go

**
**
** VIEWS
**
**
reset
/*
** VIEW
** missionObjective
**
** FUNCTION
** Joins information in the missions and objectives tables.
*/
create view missionObjective (mission, spacecraft, planet, lgtYrsFromSun,
 hrsPerRotation, yrsPerRev)
as
 select mission, scId, name, lgtYrsFromSun, hrsPerRotation, yrsPerRev
 from missions, planets
 where missions.objective *= planets.name
go

**
**
** TRIGGERS
**
**

reset
/*
** TRIGGER
** missionsInsUpdTrig
**
** FUNCTION
** The mission's objective value must be NULL or it must be in the
Appendix A — 149

** "planets" table before it can be used for insert or update.
*/
create trigger missionsInsUpdTrig
on missions
for insert, update
as
begin
 declare @objective name

 select @objective = objective from inserted

 if @objective = null
 begin
 return
 end

 if not exists (select * from planets where name = @objective)
 begin
 print "Mission's objective not found in 'planets' table."
 rollback transaction
 end
end
go

/*
** TRIGGER
** missionsDelTrig
**
** FUNCTION
** Only the owner of the table can delete a row.
*/
create trigger missionsDelTrig
on missions
for delete
as
begin
 if not exists (select * from sysobjects
 where id = object_id ("missions")
 and uid = user_id())
 begin
 print "Only the table's owner can delete rows."
 rollback transaction
 end
end
go
150 — Appendix A

**
**
** PROCEDURES
**
**
reset
/*
** PROCEDURE
** showMissions [missionName]
**
** FUNCTION
** Show mission information. If name is supplied, information for that
** mission.
*/
create procedure showMissions
@missionName name = null
as
begin
 print " MISSION INFORMATION"
 print " "
 if @missionName = null
 begin
 select mission, scId, objective
 from missions
 order by mission
 end
 else
 begin
 select mission, scId, objective
 from missions
 where mission = @missionName
 end
end
go

/*
** PROCEDURE
** showPlanets [planetName]
**
** FUNCTION
** Display information about planets in the Solar System.
*/
create procedure showPlanets
@planetName name = null
as
Appendix A — 151

begin
 if @planetName = null
 begin
 select name, lgtYrsFromSun, hrsPerRotation, yrsPerRev
 from planets
 order by number
 end
 else
 begin
 select name, lgtYrsFromSun, hrsPerRotation, yrsPerRev
 from planets
 where name = @planetName
 end
end
go

reset
/*
** PROCEDURE
** showMissionObjective [mission]
**
** FUNCTION
** Display information about the planets visited by spacecraft missions.
*/
create procedure showMissionObjective
@mission name = null
as
begin
 if @mission = null
 begin
 select mission, planet
 from missionObjective
 end
 else
 begin
 select mission, planet
 from missionObjective
 where mission = @mission
 end
end
go

**
**
** CAPABILITIES
152 — Appendix A

**
**
reset

grant select, insert, update on missions to public
grant select on planets to public
grant select on missionObjective to public
grant exec on showMissions to public
grant exec on showPlanets to public
grant exec on showMissionObjective to public
go

**
**
** DATA
**
**
reset

insert into planets (number, name, lgtYrsFromSun, hrsPerRotation, yrsPerRev)
values (1, "Mercury", 6.30786185E-6, 211.284, 2.411E-1)
insert into planets (number, name, lgtYrsFromSun, hrsPerRotation, yrsPerRev)
values (2, "Venus", 1.14223444E-5, NULL, 6.164E-1)
insert into planets (number, name, lgtYrsFromSun, hrsPerRotation, yrsPerRev)
values (3, "Earth", 1.58548960E-5, 24.000, 1.000)
insert into planets (number, name, lgtYrsFromSun, hrsPerRotation, yrsPerRev)
values (4, "Mars", 2.42085509E-5, 24.664, 1.882E0)
insert into planets (number, name, lgtYrsFromSun, hrsPerRotation, yrsPerRev)
values (5, "Jupiter", 8.23431695E-5, 10.021, 12.343)
insert into planets (number, name, lgtYrsFromSun, hrsPerRotation, yrsPerRev)
values (6, "Saturn", 1.51047719E-4, 10.273, 29.025)
insert into planets (number, name, lgtYrsFromSun, hrsPerRotation, yrsPerRev)
values (7, "Uranus", 3.03459300E-4, 10.801, 84.110)
insert into planets (number, name, lgtYrsFromSun, hrsPerRotation, yrsPerRev)
values (8, "Neptune", 4.75646880E-4, 15.898, 165.592)
insert into planets (number, name, lgtYrsFromSun, hrsPerRotation, yrsPerRev)
values (9, "Pluto", 6.625671702E-4, NULL, 248.637)
go

insert into missions (id, mission, scId, objective, description, flying)
values (1, "Cassini", 72, "Saturn", "The Cassini Mission to Saturn", 0)
insert into missions (id, mission, scId, objective, description, flying)
values (2, "GLL", 35, "Jupiter", "The Galileo Mission to Jupiter", 1)
insert into missions (id, mission, scId, objective, description, flying)
values (3, "MO", 91, "Mars", "The Mars Observer Mission", 1)
Appendix A — 153

insert into missions (id, mission, scId, objective, description, flying)
values (4, "VGR", 0, NULL, "The Voyager Mission to the outer solar system", 1)
go
154 — Appendix A

Index
Index

B
bug reporting 15

C
Can 29
cancel 40

database command 40
in a report specification 118
with reset command 40

changing directories 67
command execution 39
commands

cancel 23
close commandFile 66
close dataFile 66
close logFile 66
connect 31
directory 67, 88
edit macro 75
edit report 105, 115
escape 60, 79, 128
exit (see exit) 25, 27
expand global 93
expand macro 94
global 92
help 61
history 63, 77
history list 120
include macro 89
last 57, 64
leslie (pause) 123
macro 72
open commandFile 66
open dataFile 66
open logFile 66
print (in macros) 73
remove global 95, 130
remove macro 87, 130

rename macro 82
repeat 86
replace macro 90
report 105, 115
reset 40
run report 105, 115
save macro 87
script (see scripts) 122
set (see set also) 42
show db 97
show file 67
show global 93
show macro 74
show servers 29
show set 42

D
database

accessing 30
catalog information 97

database catalog 97
database connection

common errors 29, 138
initial 21, 28
re-connect 31
retry on error 28
setting default database 32
timeout 46
time-out period 29

database servers

listing 29
database, locating 30
dbView

installing 16
starting 21, 27
Sybase environment 16

E
edit 23, 41, 44, 75, 79
environment 16, 46
errors 90

database 42
database server 136
login 138

escape 79
escaping to the operating system 60
exit 25, 27, 31

nosave 27, 46
when macros are not saved 88
 155

Index
export 50, 51
copy and paste with 52
endField 44
endRow 44

F
files 129

commandFile 66, 70
dataFile 66, 71
logFile 66, 68
show open files 67

Format

numbers 44
format 44

column spacing 46
header 44, 53
list 24
numbers 45, 54, 117

decimal 54
mixed format reals 57
scientific notation 56

page 45, 53
query results 48, 49, 50

G
global variables 92

defining 92
diplaying contents in a macro 94
expanding global variable definition 93
in macros 93
remove global 95
saving 96
saving to a file 87
showing definition of 93
underfined 95

H
help 61
history

length of history list 44
history list 63, 72, 77, 78

length of 64

I
interfaces file 29

L
last 64

M
macro

show macro

command

show macro 83
macros 72

comments 128
default macro file 89
defining 72, 76
displaying global variables in 94
editing 75, 81
executing 73
exiting with changes pending 88
global variables 92, 93
in scripts 128
including macros from files 89
local variables 81, 85

defaults 82
persistent default 83
session default 83
special ($password) 84

redefining dbView commands with 78
removing 87
rename 82
repeat 86
replacing files 90
saving

commands

save macro 88
saving to a file 87
scripts with 122, 134
sharing files 91
show macro 74
undefined global variables 95
using in reports 110
using the history list with 77
variables

special ($password) 128

P
page size 45
password 84, 128
pause 123
prompts

default value 21

R
relation databases 141
relational databases 142
156

Index
release notes 15
repeating macro commands 86
report

mailing 45
printing 45

reports 105
character string formatting 108
common errors made in 118
database command 113
database commands 107
defining 105
defining with history list 120
editiing specification 105
field format 108, 113
field header 108, 113
footer 109, 114
format specifications

character strings 116
numbers 110, 113

formats specifications

numbers 116
hints for creating 120
mail to 109, 114, 117
page length 109, 114
printers 110, 114, 117, 118, 126
report title 107, 113
rules about 115
running 105
using macros in 110

S
scripts 122

comments 128
examples

copying a database tables contents 127
loading SQL commands 125
printing a report 126

including comments in 123
invoking from a macro 134
macro comments 128
nesting script files 123
pausing in 123
rules for running 124
setting the environment for 129
suppressing command display 128
using macros in 128
using passwords in 128

set 42, 43
defaultMacroFile 43, 89
displayRows 43, 47

displayScriptCommands 44, 128
doublePrecision 44, 55, 57, 111
doublePresision 117
editor 44
endField 44, 51
endRow 44, 51
feedback 44, 58
format 44, 48

export 50
list 49
table 48

header 44, 53
history 44, 64
mailReport 45, 114, 117
page 45, 53
printReport 45, 110, 114, 117
reals 45, 57, 111, 117
show set 42
singlePrecision 45, 55, 57, 117
spaces 46
the Sybase set command 58
timeout 46
timer 46
verbose 46, 99, 101

show db

stored procedures 102
tables 98
triggers, defaults & rules 104
verbose 99, 101, 103
views 100

SQL 22, 58, 79, 97, 125, 141
executing 39
stored procedures 23, 24, 30, 139
timing 46

stored procedures (see SQL) 24
Sybase 16, 141, 142, 143

interfaces file 29

V
verbose 46, 99, 101, 103, 111
 157

	dbView
	A Database Access Tool
	The Data Management Section Multimission Image Processing System of The Jet Propulsion Laboratory
	John Rector, CDE Jeffery Jacobson Marc Sarrel Jimmie Young Leo Bynum
	Version 1.4
	November 28, 1994

	Table Of Contents
	Licensing
	END-USER LICENSE AGREEMENT

	This End-User License Agreement (this “Agreement”) is by and between The Jet Propulsion Laborator...
	RECITALS
	A. The Jet Propulsion Laboratory is the developer of and the owner of world-wide rights to the “S...
	B. “Software” shall mean the machine readable software program dbView and associated files in the...
	C. You desire to obtain a non-exclusive license to use the Software and The Jet Propulsion Labora...
	D. The Software includes the Open Client/C library from Sybase Corporation. The Software can not ...

	NOW, THEREFORE, in consideration of the premises and the mutual covenants herein contained, the p...
	1. Grant of Non-Exclusive License.

	Subject to the terms and conditions of this Agreement, The Jet Propulsion Laboratory hereby grant...
	2. Scope of Use.

	The Software may be operated on multi-user or networked systems, subject to any restrictions that...
	3. Proprietary Rights.

	You acknowledge that the program code, structure and organization of the Software is the confiden...
	4. No Other Rights.

	The Jet Propulsion Laboratory retains title and ownership of the Software and the Documentation o...
	5. Term.

	The license is effective until terminated. The Jet Propulsion Laboratory has the right to termina...
	6. Limitation of Liability.

	IN NO EVENT WILL The Jet Propulsion Laboratory BE LIABLE TO YOU FOR ANY CONSEQUENTIAL OR INCIDENT...
	7. Choice of Law.

	This Agreement will be governed by and construed and enforced in accordance with the laws in forc...
	8. Integration.

	You acknowledge that you have read this Agreement, understand it and that it is the complete and ...
	9. Consent to Terms of Agreement.

	You agree that any use by you of the Software constitutes your consent to be bound by the terms a...
	The Jet Propulsion Laboratory California Institute Of Technology 4800 Oak Grove Drive Pasadena, C...
	Preface
	1 Where To Get Copies Of This Document

	A Postscript version of this document, named dbView.ps, is located on the MDMS WWW server. Use th...
	http://www-mipl/mdms/MDMS.html
	2 Typographic Conventions

	In this document, we use different typographic styles to signify how a word is being used.
	Database and file names appear in normal Courier:
	The catalog database…
	The file /usr/franklin/dbView…
	Database object names, tables, views, stored procedures, etc., as well as the names of fields wit...
	The examples in this document use the tables missions and planets.
	The missions table contains the fields, mission, scId, objective,…
	The names of program commands and their formal syntax specification are italicized:
	To display the time of execution of an SQL statement, use the set timer command. The syntax for t...
	set timer { on | off }
	Values supplied to a program are placed between quotation marks when they appear in the body of t...
	The database server user name in our example is “franklin”…
	Terminal, or screen, I/O examples appear in Courier type. Responses to prompts that are supplied ...
	To login to a database, use the connect command. At each prompt, you must supply a connection par...
	1> connect
	userName []: franklin
	password:
	server []: CATALOGDBS
	database []: catalog
	3 Syntax Rules
	3.1 Command Keys

	Command keys appear in angle brackets. For example, when you are asked to press the return key on...
	Press the <return> key.
	Also, combinations of command keys appear in angle brackets and are separated by a dash. For exam...
	To cancel a command, press <control-c>
	This command asks you to press the control and the c key simultaneously.
	3.2 Command Syntax

	• An options list, where one option must be selected appear between curly braces. A vertical bar ...
	set timer {on | off}
	means that the set timer command takes one of two options: either “on” or “off”, so the valid com...
	set timer on
	set timer off
	• Names that signify a value you must supply appear in angle brackets:
	set page <number of lines>
	In this example, you are expected to supply a number representing the number of lines to appear o...
	set page 10
	• Optional parameters appear in square brackets, “[]”. For example:
	show set [<command name>]
	signifies that the show set command can be used with, or without, a parameter. For example:
	show set
	show set timer
	4 Default Values For Prompts

	If a command issues a prompt, it will very often have a default value associated with it. You acc...
	1> connect
	userName [franklin]: <return>
	password:
	server [PDSSERVER]: CATALOGDBS
	database [master]: catalog
	The command has four prompts. In the example, we accepted the userName default, “franklin”, by pr...
	Release Notes & Installation Guide
	5 Release Notes

	dbView is a command line interface to Sybase database servers. If you have bugs to report or sugg...
	mdms@candide.jpl.nasa.gov
	Bug reports should include a description of the bug, including a simple example that illustrates ...
	All correspondence — bug reports or suggestions — should include information that will allow us t...
	For further information about this product, contact the MIPS Data Management Cognitive Design Eng...
	John Rector Jet Propulsion Laboratory MS 168–522 4800 Oak Grove Driver Pasadena, CA 91109–8099
	Email: jar@next1.jpl.nasa.gov
	5.1 What’s New In Version 2.0

	• dbView macros have been changed so that you can include more than one SQL statement.
	• Comments now appear in the body of the macro at any point you want to see them. Blank lines are...
	• Macro commands have a print statement that displays strings when a macro is run.
	• They way in which individual macros can be saved to a file has been improved and extended.
	• A new set command, set feedback on or off has been added. When turned on, dbView will issue a s...
	• The server command will list the Sybase servers known to dbView.
	• The few known bugs in dbView have been fixed.
	• Sections of this document have been reordered to make the presentation of material more logically.
	6 Installing dbView

	dbView is a program written in ANSI Standard C and is in compliance with the POSIX.1 library inte...
	dbView connects with Sybase servers using Sybase’s Open Client/C Library. Before you run dbView, ...
	Before you can use dbView to connect to a Sybase server, you’ll need to configure your machine to...
	6.1 Setting Up A Sybase Environment

	When you run dbView, it first attempts to connect to a Sybase database server. For this to be suc...
	The environment variable (Unix) or logical name (VMS) SYBASE must be defined as the directory whe...
	You can check to see if everything is in order with one simple operation: try to read the interfa...
	% vi $SYBASE/interfaces
	If the file does not appear in the editor, you have a problem that must be fixed. The problem cou...
	1. The interfaces file does not exits.
	2. The variable SYBASE is not defined or does not point to the directory where the interfaces fil...
	3. You don’t have read access to the interface file or its directory.

	Once you can view the interfaces file, you should take some time to examine its contents because ...
	#
	# File: $SYBASE/interfaces
	#
	# Function: The interfaces file used by Data Management
	# Development.
	#
	# Date: June 19, 1992
	#
	MIPSDB1
	query tcp sun-ether milano 1040
	#
	CATALOGDBS
	query tcp sun-ether mantua 1040
	query tcp sun-ether venice 1040
	#
	# PDS Central Node
	#
	PDSYBASECN
	query tcp sun-ether thorndyke 2030
	(Note: You should never edit the interfaces file; leave that task to a database administrator. Th...
	The indented lines following server name contain the connection information — this is the part of...
	Using the telephone example again, suppose that you know you’ve got the right name and number, bu...
	#
	MIPSDB1
	query tcp sun-ether milano 1040
	We want to use that name to see if we can connect to the other machine. This has nothing to do wi...
	% telnet milano
	Trying 128.147.24.63...
	Connected to milano.
	Escape character is '^]'.
	SunOS UNIX (milano)
	login:
	You should see the type of response in the example above. (Type <control-d> at this point to exit...
	Tutorial
	7 Introduction

	dbView is a command line utility that allows you connect to a database server—currently a Sybase ...
	This tutorial introduces dbView’s commands using simple examples. We begin with a quick introduct...
	1. Starting dbView
	2. Connecting to a database server
	3. Executing SQL commands and retrieving data from a database
	4. Editing a SQL command
	5. Exiting from dbView.

	The introduction should take you about 15 minutes to complete. Once you’ve finished it, you shoul...
	Following the introduction, we describe dbView’s command set. The commands are grouped into the m...
	• Connecting to a database server.
	• Executing commands.
	• Getting help for dbView commands.
	• Saving commands and data to files.
	• Using macros to encapsulate commands
	• Accessing data dictionary information.
	• Generating reports.
	• Running script files that contain dbView and SQL commands.
	• Reading error messages returned by dbView.
	Once you’ve completed the tutorial, you can use the index to quickly locate references to specifi...
	7.1 A Little More About dbView

	Before we begin in earnest, there are just a few more things you need to know about dbView.
	• dbView is a client process. It accesses a database server over a network. This means you can us...
	• Currently, dbView supports Sybase and Illustra database servers.
	• dbView currently runs in SUN (SUN OS and Solaris), HP, SGI, NeXT and DEC VMS environments.
	• Currently, dbView only supports English language command input.
	8 Getting Started

	In this section we’ll show you how to use dbView to execute and edit a database statement. In lat...
	To run dbView, type dbView at your system prompt and hit the <return> key. (In this guide we’ll u...
	% dbView
	When you start dbView, it responds by displaying version and copyright information. Following imm...
	dbView, version 1.4, (dblib, milib), 28 Nov, 1994
	Copyright 1993, The Jet Propulsion Laboratory. All rights reserved.
	userName []: franklin
	password:
	server []: CATALOGDBS
	database []: catalog
	DBMS Type []: Sybase
	1> ¨ this is the command prompt
	If you’re using Illustra, the last line should be:
	DBMS Type []: Illustra
	We’ve used the login name of “franklin”. The password is not displayed for security reasons. The ...
	Notice the square brackets, [], that appear at the end of each prompt except for “password” in t...
	Once you’re in dbView, type in a SQL command or the name of a Sybase stored procedure. To get ano...
	For our first example, we’ll type in a SQL command that returns the names of all the planets in t...
	Here’s the Sybase version:
	1> select name from planets
	2> go
	name

	Earth
	Jupiter
	Mars
	Mercury
	Neptune
	Pluto
	Saturn
	Uranus
	Venus
	(9 row(s) affected)
	For Illustra you need to end the SQL command with a semicolon, like this:
	1> select name from planets; ¨ semicolon goes here
	2> go
	name

	Earth
	Jupiter
	Mars
	Mercury
	Neptune
	Pluto
	Saturn
	Uranus
	Venus
	(9 row(s) affected)
	So, what happened? First we typed in four lines that make up the SQL command. Then we typed in “g...
	Once dbView displays the status information, it returns us to the command line. It prompts us wit...
	If you make a mistake while typing in the command, try one of these options:
	1. Cancel the command and start over by typing <control c>. Then type in the command again.

	1> select anme
	2> from^C ¨ typed <control c> here
	1> select name
	2> from planets
	5> go
	2. Edit the command by typing the word edit on a command line of its own. Edit the command and re...

	1> select naem
	2> from
	3> edit
	…correct and complete the command in your editor and then return to dbView’s command line.
	1> select name
	2> from planets
	5>
	…execute the command by typing “go” on line 5
	8.1 Sybase System Stored Procedures

	Next, we’ll execute the system stored procedure, sp_who. This procedure gives us the information ...
	1> sp_who franklin
	2> go
	spid
	status
	loginame
	hostname
	blk
	dbname
	cmd

	5
	running
	franklin
	friuli
	0
	catalog
	SELECT
	(1 row(s) affected, return status = 0)
	dbView has responded just as it did in the last example, only this time we used a stored procedur...
	sp_who is just one of a set of system stored procedures supplied with every Sybase database serve...
	1> set format list
	1> sp_helpdb
	2> go
	Row 1>
	name = catalog ¨ the name of a database
	db_size = 236 MB
	owner = sa
	dbid = 4
	created = Mar 11, 1993
	status = no options set
	Row 2>
	name = master
	db_size = 5 MB
	owner = sa
	dbid = 1
	created = Jan 01, 1900
	status = no options set
	Row 3>
	name = model
	db_size = 2 MB
	owner = sa
	dbid = 3
	created = Jan 01, 1900
	status = no options set
	Row 4>
	name = tempdb
	db_size = 40 MB
	owner = sa
	dbid = 2
	created = Mar 30, 1993
	status = select into/bulkcopy
	(return status = 0)
	The procedure returned the names of four databases. The databases, master, model and tempdb are p...
	To change the format so that we get results in tabular format once again, execute the dbView comm...
	1> set format table
	We could have moved to another database by executing the Sybase Transact-SQL command:
	user <database>
	Since this is a SQL command, we need to type “go” following it:
	1> use master
	2> go
	Changed database context to 'master'.
	8.2 Ending The dbView Session

	You now know the basics of using dbView with one exception—you don’t know how to end a session; b...
	1> exit
	At this point, dbView exits and returns us to the system prompt.
	8.3 What You’ve Learned

	In this section we:
	• Started dbView
	• Connected to a database
	• Executed SQL statements and stored procedures.
	• Used the dbView set command.
	• Exited the program.
	There is one rule to remember from this section:
	SQL commands—and stored procedures are SQL commands—are executed by following the command with th...
	So you’re 15 minutes are up and you now can use dbView to retrieve data from a database. Congratu...
	9 Running And Exiting From dbView

	Before running dbView, you must have a valid Sybase environment on your machine and you must be a...
	To run dbView, type the name of the program at your system prompt:
	% dbView
	dbView will first prompt you for database server connection information, which we cover in the ne...
	When you finished with dbView and want to exit, type exit as a new command (New commands always b...
	3> reset
	1> exit
	The full syntax for the exit command is
	exit [noSave]
	If you include the “noSave” option, dbView will not save your current configuration. Use this opt...
	1> exit noSave
	(The significance of this form of the exit command will be clearer once we have introduced more o...
	10 Connecting To A Database Server

	In the previous section, “Getting Started” we made an initial connection to a database server. On...
	Suppose we are now running dbView for the second time and we want to use the same connection info...
	% dbView
	dbView, version 1.0, May 15, 1993
	Copyright 1993, The Jet Propulsion Laboratory. All rights reserved.
	userName [franklin]: <return>
	password: <password><return>
	server [CATALOGDBS]: <return>
	database [catalog]: <return>
	DBMS Type [Sybase]: <return>
	1>
	10.1 The Connect Retry Prompt

	If an error occurs while dbView attempts to make a connection, you will receive an error message....
	Try again? { y | n } [y]:
	dbView is asking if you want to try to make the connection again. If you press the <return> key, ...
	Try again? { y | n } [y]: <return>
	What happens if you type “n” (no)? dbView does not exit; rather it leaves you at its command prom...
	10.1.1 Increasing The Time-out Period

	You may have “timed-out”. That is, you may be on a busy network. By default, dbView waits for 60 ...
	To increase the time-out period, use the command:
	set timeout <number of seconds>
	For example, let’s increase the time-out period to 180 seconds:
	1> set timeout 180
	The command takes effect as soon as you press the <return> key. The next time you connect, dbView...
	10.1.2 The Show Server Command

	If you were unable to connect to a server, it may be that you have used the wrong database server...
	1> show server
	- CATALOGDBS
	- CDB
	- PDSYBASECN
	- SYSTEM10
	You should used one of the names in the list as the server name when you make a dbView connection...
	You don’t have to be connected to a server to execute the show server command; the information is...
	10.1.3 Can’t Find The Interfaces File

	Sometimes dbView can not connect to a server because it can’t find a copy of the interfaces file....
	userName [franklin]:
	password:
	server [CATALOGDBS]:
	database [catalog]:
	DBMS Type [Sybase]:
	MDMS DBLIB MSGFAILED milano::General Delivery Fri Apr 23 11:35:39 1993
	MsgNo: 20015, Svr: 3
	Could not open interface file.
	MDMS PROGRAM ERROR milano::dbView Fri Apr 23 11:35:39 1993
	dbopen error for SQL command: CATALOGDBS server connection
	Try again? { y | n } [y]: n
	Executing the show server will also tell you if you can access the interfaces file. If dbView can...
	1> show server
	MDMS PROGRAM ERROR milano::dbView Fri Apr 23 11:35:51 1993
	Could not open interfaces file - /usr/sybase/interfaces.
	If you see this sort of messages, then your Sybase environment is not set-up correctly—see the In...
	10.1.4 Getting The List Of Databases And Accessing A Database

	At this point, you might wonder if dbView has a command to show database. The answer is no, becau...
	1> sp_helpdb
	2> go
	and you’ll retrieve information on all the databases on the server to which you’re connected.
	There are other useful Sybase stored procedures. For a complete description of these, see the Syb...
	Once we’re connected to a server, we can access a particular database using the Sybase Transact-S...
	user <database name>
	For example, to access the catalog database, we would execute the command:
	1> use catalog
	2> go
	Changed database context to 'catalog'.
	(Note: Your Database Administrator must grant you the privilege to access a database before this ...
	If you don’t have the privilege to access a database, you’ll get an error message that looks like...
	1> use payroll
	2> go
	MDMS DBS WARNING milano::dbView Thu Mar 17 07:32:11 1994
	(Db: jar, MsgNo: 916, Svr: 14, St: 1)
	Server user id 3 is not a valid user in database 'payroll'
	Changed database context to 'catalog'.
	10.1.5 Exiting After Connection Failure

	Since dbView always leaves you at the command prompt following a connection attempt, you must use...
	1> exit
	The exit command is only recognized as a new command, i.e., the command line number is 1. If you’...
	10.1.6 The Connect command

	You don’t have to exit dbView to connect to another server or to reconnect to one after a connect...
	1> connect
	userName [franklin]: anonymous<return>
	password: <password><return>
	server [CATALOGDBS]: PSYBASECN<return>
	database [catalog]: <return>
	DBMS Type [Sybase]: <return>
	1>
	We’re now connected to the database server PSYBASECN as “anonymous”. Notice that we also kept the...
	10.1.7 Using A Default Database

	dbView always prompts you for a database name. Since Sybase always places you in a default databa...
	1> connect
	userName [franklin]: <return>
	password: <password><return>
	server [CATALOGDBS]: <return>
	database [catalog]: ?<return>
	DBMS Type [Sybase]: <return>
	The question mark indicated that you’re not specifying the database. Instead, the database server...
	11 Connecting To Multiple DBMS’s Simultaneously

	If you only use one type of DBMS and you only plan to make one connection to a database at a time...
	11.1 Defining Multiple Connections

	dbView can maintain multiple simultaneous connections, and different connections can be made to d...
	connect [<user supplied handle> | default]
	An example will explain how the command is used. Lets make an initial connection to dbView; the o...
	First the initial connection.
	dbView, version 1.4, (dblib, milib), 28 Nov 1994
	Copyright 1993, The Jet Propulsion Laboratory. All rights reserved.
	User name []: franklin
	password:
	server []: CATALOGDBS
	database []: catalog
	DBMS Type []: Sybase
	Now the two additional connections. The initial connection is still maintained because we supply ...
	1> connect mapping
	User name [franklin]:
	password:
	server [CATALOGDBS]: Illustra1
	database [catalog]: planetMaps
	DBMS Type [Sybase]: Illustra
	1> connect telemetry
	User name [franklin]: madison
	password:
	server [CATALOGDBS]: TELEMCAT
	database [catalog]: telem
	DBMS Type [Sybase]:
	Let’s make some observations on what we’ve done so far.
	1. Whenever we make a new connection, that becomes the current connection. (We’ll show you how to...
	2. The default paremeters for a new connection command always come from your initial connection. ...
	3. You only have to change parameters that will be new for the handle you’re defining. Notice in ...
	4. If you look at the syntax for the connect command again, you see that it includes a special ha...
	5. There’s an advantage to using handles if you have many DBMS’s to connect to, or even if you ha...
	11.2 Using Connection Handles

	Now that we’ve got three connections—see the example in the last section—we can change connection...
	1> connect mapping
	Since we’ve got this connection defined, dbView just changes the connection; it doesn’t re- promp...
	Let’s change connections a couple of more times.
	1> connect telemetry
	1> connect default
	The last connection takes us to our initial connection—the one we made when we first entered dbVi...
	With multiple connections, you can forget were you are, so dbView provides a command for finding ...
	show handle
	Let’s connect to “mapping” and try it.
	1> connect mapping
	1> show handle
	default connected
	mapping connected using
	telemetry connected
	We’ve got three handles defined and we’re connected to all of them. We’re currently using the “ma...
	1> connect telemetry
	1> show handle
	default connected
	mapping connected
	telemetry connected using
	We can drop a connection with the command:
	disconnect <handle name>
	We’ll drop the connection associated with the “telemetry” handle and then use show handle again.
	1> disconnect telemetry
	1> show handle
	default connected using
	mapping connected
	telemetry
	We’re no longer connected to the telemetry handle. When we disconnect from a handle we’re using, ...
	Notice that the “telemetry” handle is still defined, it’s just not connect any more, so we can st...
	1> connect telemetry
	User name [madison]:
	password:
	server [TELEMCAT]:
	database [telem]:
	DBMS Type [Sybase]:
	Notice that the handle maintains its default values. You could change them when prompted, but all...
	When you exit dbView, all of your defined handles are written into the .dbView file. The next tim...
	When you first use a handle in a new dbView session, you must enter the password, so dbView promp...
	1> connect telemetry ¨ connected, so no prompt
	1> disconnect telemetry
	1> connect telemetry ¨ not connected, so we get prompted
	User name [madison]: hamilton
	password:
	server [TELEMCAT]:
	database [telem]:
	DBMS Type [Sybase]:
	Now we’ve change the handle to connect as “hamilton” instead of “madison”.
	If you just enter the command “connect”, you’re always prompted for parameters which are applied ...
	You can also remove a handle completely so it no longer appears in your dbView session. You do th...
	remove handle <user supplied handle>
	Notice that it only says user supplied handle; you can’t remove the “default” handle. But, you ca...
	dbView won’t let you remove a handle that it’s using for a connection—it would loose track of the...
	1> show handle
	default connected using
	mapping connected
	telemetry connected
	1> remove handle telemetry ¨ won’t work, we’re connected
	Cannot remove connected handle. Disconnect and try
	again.
	1> disconnect telemetry
	1> remove handle telemetry
	1> show handle
	default connected using
	mapping connected
	The first time we tried to remove the “telemetry” handle we were using it, so dbView issued an er...
	11.3 Handles And The Password Server

	The password server stores database passwords. To use it you must be registered with a Kerberos a...
	If you are using a password server and you’re a valid user in that server, you can connect immedi...
	Before you try this, you’ll have to make one addition setting. By default, dbView always prompts,...
	set promptOnConnect {on | off}
	By default it is set to “on”. To work with the password server, you want to set if off, so dbView...
	1> set promptOnConnect off
	Now you won’t be prompted. If you did want to be prompted, turn on the setting.
	11.4 Handles And dbView’s Batch Mode

	Handles and the password server can be used with a special dbView batch mode. Batch mode is discu...
	Later you’ll see that batch mode has many uses. Suppose, for example, that your script file conta...
	12 Executing A Command

	Once connected to a database server, dbView waits at its command prompt for input from you. You c...
	Show server is an example of a dbView command. As soon as you type it in and press the return key...
	1> show server
	- CATALOGDBS
	- CDB
	- PDSYBASECN
	- SYSTEM10
	The next example shows an SQL command entered on 3 lines. The fourth line has the “go” terminator...
	1> select mission, scId
	2> from missions
	3> order by mission
	4> go ¨ this is command terminator
	mission scId
	--------------- -----------
	Cassini 72
	GLL 35
	MO 91
	VGR 0
	(4 row(s) affected)
	In the next example, we show a stored procedure command. Even though it can be entered on a singl...
	1> showMissions
	2> go
	MISSION INFORMATION
	mission scId objective
	--------------- ----------- ---------------
	Cassini 72 Saturn
	GLL 35 Jupiter
	MO 91 Mars
	VGR 0 NULL
	(4 row(s) affected, return status = 0)
	1> ¨ dbView’s signal for the next command
	Here’s the underlying rule: Any command string dbView does not recognized as one of its own, is a...
	12.1 Cancelling A Command

	If you make a mistake while entering a command, you can cancel it and start over.
	12.1.1 Cancelling A Command Using <control-c>

	When you are in the middle of a command, typing <control-c> (the control key and the c key presse...
	1> sedect mission
	2> from^C
	1> select mission
	2> from missions
	3> go
	12.1.2 Cancelling A Database Command Using <control-c>

	You can also use <control-c> to interrupt a database command that is in the processing of executi...
	12.1.3 The reset Command

	You can also cancel a dbView command by typing reset on the next command line, for example:
	1> select mission, scId
	2> reset
	1>
	Reset only cancels a command in dbView’s command buffer. It can not be used to terminate a databa...
	Why does dbView have the reset command when <control-c> works just fine to cancel a command? In s...
	1> The following SQL statement will bring back information
	2> from the "planets" table which contains the names and
	3> other information about the planets in the Solar System.
	4> reset ¨ we don’t want the comment executed
	1> select * from planets
	2> go
	12.2 Editing Commands

	In the previous section, we saw how to cancel a command to correct a mistake in an SQL statement....
	To use the editor, type in the edit command on a new command line, like so:
	1> sedect mission
	2> edit
	... command corrected and completed in the editor
	1> select mission, scId
	2> from missions
	3> order by mission
	4>
	Notice that when dbView returns from the editor it leaves you on a new command line. You can type...
	dbView defines default editors: vi for Unix systems and edt for VMS, but you can change the defau...
	set editor <editor name>
	For example, if you prefer to use emacs, type:
	1> set editor emacs
	dbView saves this setting, and will continue to use it in the current session and all subsequent ...
	12.3 When dbView Encounters An Error In An SQL Command

	If you execute a command that contains errors, dbView returns one or more messages. For example, ...
	1> sedect mission
	2> from missions
	3> order by mission
	2> go
	you get the following error messages back, (see "What’s In An Error Message?" on page�136, for a ...
	MDM DBS WARNING milano::dbView Fri Nov 13 12:54:20 1992
	(Db: catalog, MsgNo: 156, Svr: 15, St: 1)
	Incorrect syntax near the keyword 'from'.
	If you receive one or more error messages, correct the error in the editor and execute the comman...
	12.4 The Set Command

	We’ve mentioned the dbView set in passing several times. The set command sets a dbView parameter ...
	set <parameter> <value>
	We can see all of the set commands using the show set command.
	1> show set
	- defaultMacroFile = <not defined>
	- displayRows = on
	- displayScriptCommands = on
	- doublePrecision = 12
	- editor = vi
	- endField = \t
	- endRow = \n
	- feedback = off
	- format = table
	- header = on
	- history = 20
	- mailReport = off
	- page = 0
	- printReport = off
	- promptOnConnect = on
	- reals = f
	- singlePrecision = 6
	- spaces = 2
	- timer = off
	- timeout = 60
	- verbose = off
	The syntax for the command is:
	show set [<set command parameter>]
	As we’ve just seen, if you don’t specify a set command parameter, dbView lists the values of all ...
	When you supply a set parameter name with the show set command, dbView returns the values for tha...
	1> show set timer
	- time = on
	1> show set format
	- format = table
	The show set command doesn’t tell you the significance of a particular command nor does it tell y...
	12.4.1 Set Command Definitions

	We’ll discuss how and where you’d use set commands further along in this document. In this sectio...
	set defaultMacroFile <file name> [<file name> ...]
	The full name of the file - including any directory specification -
	that contains macro definitions that should be read in when dbView is
	run. More that one file may be placed on this list.
	Default: none
	set displayRows { on | off }
	If set to "off", rows are not returned when a query is executed. Most
	often used to determine the execution time of a query minus the time
	for screen I/O.
	Default: on
	set displayScriptCommands { on | off }
	If set to "off", commands executed from script files are not
	written to the screen. Useful for applications where the user
	must respond to prompts, or needs a clear view of output.
	Default: on
	set doublePrecision <integer>
	The number of digits displayed for a double precision floating point
	number - 8 bytes in length on most machines.
	Default: 12
	Range: 1,...,18
	set editor <editor name>
	The name of the editor dbView invokes when you type the edit command.
	Default: vi (Unix), edt (VMS)
	set endField <string>
	The set of symbols that separate fields in rows of data returned by
	the export table format.
	Default: tab <\t>
	set endRow <string>
	The set of symbols that terminate a row, or record, when data is
	returned by the export table format.
	Default: newline <\n>
	set feedback { on | off }
	If set to "on", dots will be displayed on the screen while waiting
	for the results of each query.
	Default: off
	set format { table | list | export }
	The display format for data returned by a database query.
	Default: table
	set header { on | off }
	If set to "off", the columns names and status line that normally
	appear as part of a information returned by a query are suppressed.
	Default: on
	set history <list size>
	The number of commands kept in the history list.
	Default: 10
	Range: 1,...,100
	set mailReport { on | off }
	If a report has a list of eMail addresses associated with it, mail is
	not sent is the value of mailReport is "off".
	Default: on
	set page <number of display lines>
	The number of lines in a page full of display data before dbView will
	stop and wait for you to signal for more. The signal for another page
	of data is <return>. If the number of display lines is set to 0,
	dbView understands this to mean an unlimited number of rows should be
	returned on a page.
	Default: 10000
	Range: 0,,10000
	set printReport { on | off }
	If a report contains a command to send the report to a printer, you
	can suppress that command by setting printReport of a values of "off".
	Default: on
	set promptOnConnect { on | off }
	If set to “on”, the user is prompted for connection information when using pre- defined handles. ...
	Default: on
	set reals { f | e | E | g | G }
	The format for real and floating point numbers. "f" is decimal format.
	"e" and "E" are scientific notation format. And "g" and "G" are mixed,
	depending on the magnitude of the value. The case of the letters "e"
	and "g" will be reflected in the scientific notation display. For
	example:
	set reals e
	real float
	------------- -------------------
	1.234456e+03 1.234567890000e+07
	set reals E
	real float
	------------- -------------------
	1.234456E+03 1.234567890000E+07
	The number of digits displayed is controlled by the parameters
	singlePrecision and doublePrecision.
	Default: f
	set singlePrecision <integer>
	The number of digits displayed for a single precision floating point
	numbers - 4 bytes in length on most machines.
	Default: 6
	Range: 1,...,10
	set spaces <integer>
	The number of spaces between columns of data returned by a database query.
	Default: 2
	Range: 1,...,80
	set timer { on | off }
	When set "on", database commands return the time it took to execute
	the command and to display any data returned.
	Default: off
	set timeout <integer>
	The number of seconds dbView waits while attempting to connect to a
	database server.
	Default: 60
	Range: 0,...,32767
	set verbose { on | off }
	When set to "on", causes the commands show db and show macro to
	display additional information. Also, if set to If set to "on",
	causes any comment associated with a macro to be displayed before
	the macro is executed.
	12.5 Saving dbView’s Environment

	When you exit dbView, your current environment is saved to a file. For Unix systems the files is ...
	The file contains all of the set command values plus you database server connection parameters. T...
	If you’ve made changes to the set commands in a dbView session; and you don’t want those changes ...
	1> exit nosave
	dbView then exits without writing-out a new .dbview file.
	12.6 Timing Commands

	You can measure the length of time it takes to completely execute an SQL command, including the a...
	1> set timer on
	1> select mission, scId
	2> from missions
	3> order by mission
	4> go
	mission scId
	--------------- -----------
	Cassini 72
	GLL 35
	MO 91
	VGR 0
	(4 row(s) affected)
	SQL statement took 0.04 seconds to execute.
	1> set timer off
	1>
	Times are recorded to a hundreth of a second.
	Reported times include the amount of time it took to return the data to your screen. If you want ...
	1> set displayRows off
	1> select mission, scId
	2> from missions
	3> order by mission
	4> go
	(4 row(s) affected)
	SQL statement took 0.02 seconds to execute.
	Without the screen I/O, the query took half as long to complete. Turn the display back on with th...
	1> set displayRows on
	12.7 Altering The Database Table Display Format

	Data returned from a database server to dbView can be formatted in one of three ways: table, list...
	set format { table | list | export }
	The curly braces enclose a list of options, one of which must be chosen. The vertical line means ...
	12.7.1 Table Format

	Here’s an example of table formatted data:
	1> select mission, scId
	2> from missions
	3> order by mission
	4> go
	mission scId
	--------------- -----------
	Cassini 72
	GLL 35
	MO 91
	VGR 0
	(4 row(s) affected)
	In table format you can adjust the number of spaces between each column with the set spaces comma...
	1> set spaces 6
	1> select mission, scId
	2> from missions
	3> order by mission
	4> go
	mission scId
	--------------- -----------
	Cassini 72
	GLL 35
	MO 91
	VGR 0
	(4 row(s) affected)
	12.7.2 List Format

	Sometimes the rows in a table are so long that the data wraps one or more lines on your screen. I...
	1> select mission, scId, objective, description
	2> from missions
	3> go
	mission scId objective description
	------------------------------ ----------- ------------------ ------------ ----------------------...
	Cassini 72 Saturn The Cassini Mission to Saturn
	GLL 35 Jupiter The Galileo Mission to Jupiter
	MO 91 Mars The Mars Observer Mission
	VGR 0 NULL The Voyager Mission to the outer solar system
	(4 row(s) affected)
	If you find this difficult to read, you may want to try the list format:
	1> set format list
	1> last
	1> select mission, scId, objective, description
	2> from missions
	3> go
	Row 1>
	mission = Cassini
	scId = 72
	objective = Saturn
	description = The Cassini Mission to Saturn
	Row 2>
	mission = GLL
	scId = 35
	objective = Jupiter
	description = The Galileo Mission to Jupiter
	Row 3>
	mission = MO
	scId = 91
	objective = Mars
	description = The Mars Observer Mission
	Row 4>
	mission = VGR
	scId = 0
	objective = NULL
	description = The Voyager Mission to the outer solar system
	(4 row(s) affected)
	For this query, list format is a more readable format. Notice that each row is numbered and each ...
	List format works best when a few rows are returned. If many rows are returned, the output will t...
	12.7.3 Export Format

	Export format is used to create a data set that will be exported to another program, like a sprea...
	In export format, data comes back in rows like it does in table format, but the fields are not al...
	In the next example we return data in export format. We use a comma—defined with the set endField...
	1> set format export
	1> set endField ,
	1> select mission, scId
	2> from missions
	3> order by mission
	4> go
	mission,scId
	Cassini,71
	GLL,31
	MO,95
	VGR,0
	(4 row(s) affected)
	Later we’ll describe how this data set can be saved to a file where it can be read by another pro...
	As we’ve mentioned, the default field delimiter is the tab character and the default row delimite...
	set endField <character string>
	set endRow <character string>
	For example:
	1> set endField ,
	1> set endRow \r
	The “\r” is a special representation of the ASCII “carriage return” character. Both set endField ...
	\b back space
	\f form feed
	\n new line
	\r carriage return
	\s white space
	\t horizontal tab
	\v vertical tab
	\\ back slash
	\000 octal number
	If you want several blanks between each field, use the “white space” character. The following com...
	1> set fieldDelimiter \s\s\s\s
	12.7.4 Copy And Pasting Exported Data

	If you’re using dbView in a windowing environment, you can copy and paste results between windows...
	1. Set the format to “export”, the endField to “,” and the endRow to “\n”.

	1> set format export
	1> set endField ,
	1> set endRow \n
	2. Execute the SQL statement.

	1> select mission, scId, objective, description
	2> from missions
	3> order by mission
	4> go
	mission,scId,objective,description
	Cassini,72,Saturn,The Cassini Mission to Saturn
	GLL,35,Jupiter,The Galileo Mission to Jupiter
	MO,91,Mars,The Mars Observer Mission
	VGR,0,NULL,The Voyager Mission to the outer solar system
	(4 row(s) affected)
	3. Select and copy the data to the paste buffer from dbView’s terminal window and then paste it i...

	mission
	scId
	objective
	description
	Cassini
	72
	Saturn
	The Cassini Mission to Saturn
	GLL
	35
	Jupiter
	The Galileo Mission to Jupiter
	MO
	91
	Mars
	The Mars Observer Mission
	VGR
	0
	NULL
	The Voyager Mission to the outer solar system
	Table 1: Mission Data

	You should begin to see the possibilities of export format.
	12.8 Displaying Table Header And Footer Information

	When using table or export format, header and footer information is normally included. The header...
	set header {on | off}
	This command is particularly useful when using the export format to produce a data file that will...
	1> set header off
	1> set format export
	1> select mission, scId
	2> from missions
	3> go
	Cassini,72
	GLL,35
	MO,91
	VGR,0
	12.9 The Page command

	When data is returned to you it will scroll down the screen until a page is full. A page is defin...
	1> set page 24
	After this setting, 24 lines are displayed and then dbView stops writing output to your screen. T...
	Note: If the database is returning a large number of rows and you don’t want to page through the ...
	The syntax for the set page command is:
	set page [number of lines]
	where the number of line or rows displayed per page can be between 1 and 10,000. The set page com...
	1> set page 0
	12.10 Real Number Formats

	Sybase has two types of floating point numbers. One type is called real and uses 4 bytes to store...
	You can set the precision of single and double precision numbers independently using the commands:
	set singlePrecision <digits>
	set doublePrecision <digits>
	By default, single precision numbers have a precision of 6 digits and double precision numbers 12...
	set reals { f | e |E | g | G }
	12.10.1 The f Format

	The single and double precision floating point numbers are converted to decimal notation in the s...
	In the following example the field lgtYrsFromSun is a double precision number and the field hrsPe...
	1> select number, name, lgtYrsFromSun, hrsPerRotation
	2> from planets
	3> order by number
	4> go
	number
	name
	lgtYrsFromSun
	hrsPerRotation

	1
	Mercury
	0.000006307862
	211.283997
	2
	Venus
	0.000011422344
	NULL
	3
	Earth
	0.000015854896
	24.000000
	4
	Mars
	0.000024208551
	24.664000
	5
	Jupiter
	0.000082343170
	10.021000
	6
	Saturn
	0.000151047719
	10.273000
	7
	Uranus
	0.000303459300
	10.801000
	8
	Neptune
	0.000475646880
	15.898000
	9
	Pluto
	0.000662567170
	NULL
	Now we change the precision and run the command again.
	1> set singlePrecision 3
	1> set doublePrecision 5
	1> select number, name, lgtYrsFromSun, hrsPerRotation
	2> from planets
	3> order by number
	4> go
	number
	name
	lgtYrsFromSun
	hrsPerRotation

	1
	Mercury
	0.00001
	211.284
	2
	Venus
	0.00001
	NULL
	3
	Earth
	0.00002
	24.000
	4
	Mars
	0.00002
	24.664
	5
	Jupiter
	0.00008
	10.021
	6
	Saturn
	0.00015
	10.273
	7
	Uranus
	0.00030
	10.801
	8
	Neptune
	0.00048
	15.898
	9
	Pluto
	0.00066
	NULL
	12.10.2 The E or e Format

	The single and double precision floating point numbers are converted in the style “[-]d.ddde±ddd”...
	In this example we use the default precision values with a real number format of “E”.
	1> set reals E
	1> select number, name, lgtYrsFromSun, hrsPerRotation
	2> from planets
	3> order by number
	4> go
	number
	name
	lgtYrsFromSun
	hrsPerRotation

	1
	Mercury
	6.307861850000E-06
	2.112840E+02
	2
	Venus
	1.142234440000E-05
	NULL
	3
	Earth
	1.585489600000E-05
	2.400000E+01
	4
	Mars
	2.420855090000E-05
	2.466400E+01
	5
	Jupiter
	8.234316950000E-05
	1.002100E+01
	6
	Saturn
	1.510477190000E-04
	1.027300E+01
	7
	Uranus
	3.034593000000E-04
	1.080100E+01
	8
	Neptune
	4.756468800000E-04
	1.589800E+01
	9
	Pluto
	6.625671702000E-04
	NULL
	And now, keeping the “E” format we reset the precision.
	1> set singlePrecision 3
	1> set doublePrecision 5
	1> select number, name, lgtYrsFromSun, hrsPerRotation
	2> from planets
	3> order by number
	4> go
	number
	name
	lgtYrsFromSun
	hrsPerRotation

	1
	Mercury
	6.30786E-06
	2.113E+02
	2
	Venus
	1.14223E-05
	NULL
	3
	Earth
	1.58549E-05
	2.400E+01
	4
	Mars
	2.42086E-05
	2.466E+01
	5
	Jupiter
	8.23432E-05
	1.002E+01
	6
	Saturn
	1.51048E-04
	1.027E+01
	7
	Uranus
	3.03459E-04
	1.080E+01
	8
	Neptune
	4.75647E-04
	1.590E+01
	9
	Pluto
	6.62567E-04
	NULL
	12.10.3 The g or G Format

	The single and double precision floating point numbers are style “f” or “e” (or in style “E” for ...
	In this example we set the real number format to “G” and reset both precision values to “2”.
	1> set doublePrecision 2
	1> set singlePrecision 2
	1> set reals G
	1> last
	1> select number, name, lgtYrsFromSun, hrsPerRotation
	2> from planets
	3> order by number
	4> go
	number
	name
	lgtYrsFromSun
	hrsPerRotation

	1
	Mercury
	6.3E-06
	2.1E+02
	2
	Venus
	1.1E-05
	NULL
	3
	Earth
	1.6E-05
	24.
	4
	Mars
	2.4E-05
	25.
	5
	Jupiter
	8.2E-05
	10.
	6
	Saturn
	0.00015
	10.
	7
	Uranus
	0.00030
	11.
	8
	Neptune
	0.00048
	16.
	9
	Pluto
	0.00066
	NULL
	12.10.4 The Feedback Command

	If feedback is set on, and a database transaction takes several seconds to complete, dbView will ...
	1> set feedback on
	1> select distinct (a.name)
	2> from sysobjects a, sysobjects b
	3> order by a.id
	4> go
 ¨ feedback dots
	name

	sysobjects
	sysindexes
	more rows follow
	Feedback may be a misnomer; heartbeat might be better, because, dbView is just waiting for the tr...
	12.10.5 Using Sybase’s “Set” Command In dbView

	Sybase also has a set command, but if you try to execute it within dbView, you’ll get an error me...
	1> set showplan on ¨ a Sybase command
	Unknown set parameter "showplan".
	To get around this predicament, create a Sybase batch command between the words begin and end, li...
	1> begin
	2> set showplan on
	3> end
	4> go
	STEP 1
	The type of query is SETON.
	In this case, since the command started with the word begin instead of set, dbView recognized it ...
	13 Escaping To The Operating System

	You can execute an operating system level command from within dbView by preceding the operating s...
	escape <operating system command>
	For example, to list the names of all files with the extension “.sql” use the following command:
	Unix
	1> escape ls -1 *.sql
	dbSize.sql
	dbView.sql
	domains.sql
	dropAll.sql
	showDb.sql
	VMS
	1> escape dir [*.sql;*]
	dbSize.sql;1
	dbView.sql;1
	domains.sql;1
	dropAll.sql;1
	showDb.sql;1
	Once the shell command completes, you are returned to dbView.
	As another example, we could use the escape command to view a file with an editor:
	Unix
	1> escape vi dbView.sql
	VMS
	1> escape edt dbView.sql
	14 The Help Command

	Once you read this tutorial, you’ll want to refer to definitions of dbView command once in a whil...
	1> help
	Subtopics:
	close connect directory
	disconnect edit escape
	exit expand global
	go help history
	include info last
	leslie macro open
	print remove rename
	repeat replace report
	reset run save
	script set show
	If you include a topic from a subtopic list as part of the help command, help will:
	1. Redisplay the topic.
	2. Explain what the topic does.
	3. If there are subtopics for the command, help will display the new list of substopics.

	For example, the set command takes many parameters as part of the command. If we type “help set”,...
	1> help set
	Topic:
	set
	The set command allows you to assign a value to a parameter
	within dbView.
	Subtopics:
	defaultMacroFile displayRows displayScriptCommands
	doublePrecision editor endField
	endRow feedback format
	header history mailReport
	page printReport promptOnConnect
	reals singlePrecision spaces
	timer timeout verbose
	If we now choose a subtopic, like “set page”, we’ll get further information. Since no subtopics a...
	1> help set page
	Topic:
	set page
	set page <number of display lines>
	The number of lines in a page full of display data before dbView will
	stop and wait for you to signal for more. The signal for another page
	of data is <return>. If the number of display lines is set to 0,
	dbView understands this to mean an unlimited number of rows should be
	returned on a page.
	Default: 10000
	Range: 0,,10000
	If you enter a topic that help does not recognize, it will give you all the help it can, as the n...
	“sat” is not a command, which help tells us. Then it shows its main list of topics.
	1> help sat
	WARNING: extra text ignored: sat
	Subtopics:
	close connect directory
	disconnect edit escape
	exit expand global
	go help history
	include info last
	leslie macro open
	print remove rename
	repeat replace report
	reset run save
	script set show
	Help knows about “set”, but not about “set nothing”, so it gives us a warning message to that eff...
	1> help set nothing
	WARNING: extra text ignored: nothing
	Topic:
	set
	The set command allows you to assign a value to a parameter
	within dbView.
	Subtopics:
	defaultMacroFile displayRows displayScriptCommands
	doublePrecision editor endField
	endRow feedback format
	header history mailReport
	page printReport promptOnConnect
	reals singlePrecision spaces
	timer timeout verbose
	The syntax for the help command is:
	help [<topic>]
	14.1 The History List

	As you enter and execute command, dbView saves them in a history list. You can view the list of p...
	1> history
	---1
	show set
	---2
	select mission, scId
	from missions
	---3
	select objective, mission, scId
	from missions
	order by objective
	---4
	showMissions GLL
	---5
	set page 10
	---6
	showMissions GLL
	1> history 2
	1> select mission, scId
	2> from missions
	3>
	You recall any command in the history list, making it the current command, by adding the command’...
	1> history 2
	1> select mission, scId
	2> from missions
	3> edit
	…enter the editor where the statement is modified; then return
	1> select mission, scId, planet = name
	2> from missions, planets
	3> where missions.objective = planets.name
	4> go
	The syntax for the history command is:
	history [<command number>]
	The square brackets indicated that the number is optional.
	14.1.1 Setting The Length Of The History List

	By default, the history list contains the last 20 commands. You can change the number of commands...
	1> set history 30
	The syntax for this command is:
	set history <number of commands in list>
	14.2 The last Command

	The last command returns the last database command you entered to the command buffer. Use this co...
	For example, if you executed a command and then decided to time it, you could set the timer comma...
	1> select mission, scId
	2> from missions
	3> go
	mission scId
	--------------- -----------
	Cassini 72
	GLL 35
	MO 91
	VGR 0
	(4 row(s) affected)
	1> set timer on
	1> last
	1> select mission, scId
	2> from missions
	3> go
	mission scId
	--------------- -----------
	Cassini 72
	GLL 35
	MO 91
	VGR 0
	(4 row(s) affected)
	SQL statement took 0.03 seconds to execute.
	Following the retrieval of the SQL command, you must type “go” to execute it. (Why doesn’t dbView...
	15 Saving Commands And Data

	As you work in dbView, you can save:
	• Your session, that is, all of the commands, data and messages sent to the screen.
	• Only the commands you enter.
	• Only the data retrieved from a database.
	Files are opened with one of three open commands. There is a corresponding close command for each...
	Start saving your dbView session to a file using the command:
	open logFile <file name>
	and to stop saving it, use:
	close logFile
	To save only your commands, use:
	open commandFile <file name>
	close commandFile
	To save only data returned from the database, use:
	open dataFile <file name>
	close dataFile
	In the following example, we’ll open three files, one of each type. Then we’ll execute some comma...
	The files are opened in the following sequence:
	1> open logFile session.log
	1> open dataFile session.dat
	1> open commandFile session.sql
	Once we’re finished, we close the files with these command:
	1> close commandFile
	1> close dataFile
	1> close logFile
	The contents of the three files appear at the end of this section. The log file contains everythi...
	15.1 The Show File Command

	We use the show file command to see which files we have open. For example, if we open a command f...
	1> open commandFile example.cmd
	1> show file
	commandFile: "example.cmd".
	dataFile not open.
	logFile not open.
	15.2 The Directory Command

	dbView works out of the directory in which is was invoked, so when you open a file, the file is o...
	directory [<new path>]
	If a new path is not supplied, the command shows you the current directory without changing it. H...
	1> directory
	/usr/franklin
	1> directory /usr/franklin/dbData
	1> directory
	/usr/franklin/dbData
	Now, if we were to open a file without specifying a directory path, it would be opened in
	/usr/franklin/dbData.
	Log File—session.log
	1> open dataFile session.dat
	1> open commandFile session.sql
	1> set format list
	1> select mission, scId, description, objective, created
	2> from missions
	3> order by mission
	4> go
	Row 1>
	mission = Cassini
	scId = 72
	description = The Cassini Mission to Saturn
	objective = Saturn
	created = Mar 18 1993 8:51:56:850AM
	Row 2>
	mission = GLL
	scId = 35
	description = The Galileo Mission to Jupiter
	objective = Jupiter
	created = Mar 18 1993 8:51:56:890AM
	Row 3>
	mission = MO
	scId = 91
	description = The Mars Observer Mission
	objective = Mars
	created = Mar 18 1993 8:51:56:906AM
	Row 4>
	mission = VGR
	scId = 0
	description = The Voyager Mission to the outer solar system
	objective = NULL
	created = Mar 18 1993 8:51:56:940AM
	(4 row(s) affected)
	1> select mission
	2> from mission
	3> go
	MDMS DBS WARNING milano::dbview Fri Mar 19 08:25:08 1993
	(Db: jar, MsgNo: 208, Svr: 16, St: 1)
	Invalid object name 'mission'.
	1> set format table
	1> set reals E
	1> set singlePrecision 3
	1> set doublePrecision 5
	1> select number, name, lgtYrsFromSun, hrsPerRotation
	2> from planets
	3> where number >
	4> (select number
	5> from planets
	6> where name = 'Earth')
	7> order by number
	8> go
	number name lgtYrsFromSun hrsPerRotation
	------ --------------- ------------- --------------
	4 Mars 2.42086E-05 2.466E+01
	5 Jupiter 8.23432E-05 1.002E+01
	6 Saturn 1.51048E-04 1.027E+01
	7 Uranus 3.03459E-04 1.080E+01
	8 Neptune 4.75647E-04 1.590E+01
	9 Pluto 6.62567E-04 NULL
	(6 row(s) affected)
	1> close commandFile
	1> close dataFile
	1> close logFile
	Command File—session.sql
	set format list
	select mission, scId, description, objective, created
	from missions
	order by mission
	go
	select mission
	from mission
	go
	set format table
	set reals E
	set singlePrecision 3
	set doublePrecision 5
	select number, name, lgtYrsFromSun, hrsPerRotation
	from planets
	where number >
	(select number
	from planets
	where name = 'Earth')
	order by number
	go
	close commandFile
	Data File—session.dat
	Row 1>
	mission = Cassini
	scId = 72
	description = The Cassini Mission to Saturn
	objective = Saturn
	created = Mar 18 1993 8:51:56:850AM
	Row 2>
	mission = GLL
	scId = 35
	description = The Galileo Mission to Jupiter
	objective = Jupiter
	created = Mar 18 1993 8:51:56:890AM
	Row 3>
	mission = MO
	scId = 91
	description = The Mars Observer Mission
	objective = Mars
	created = Mar 18 1993 8:51:56:906AM
	Row 4>
	mission = VGR
	scId = 0
	description = The Voyager Mission to the outer solar
	system
	objective = NULL
	created = Mar 18 1993 8:51:56:940AM
	number name lgtYrsFromSun hrsPerRotation
	------ --------------- ------------- --------------
	4 Mars 2.42086E-05 2.466E+01
	5 Jupiter 8.23432E-05 1.002E+01
	6 Saturn 1.51048E-04 1.027E+01
	7 Uranus 3.03459E-04 1.080E+01
	8 Neptune 4.75647E-04 1.590E+01
	9 Pluto 6.62567E-04 NULL
	16 Macro Commands

	dbView has a macro command that enables you to assign a name to a set of commands to be executed....
	1. They reduce the amount of typing necessary to run frequently executed commands.
	2. They hide the complexity of the command sequence represented by the macro name.
	3. Macros can have explanatory text associated with them; i.e., they carry their documentation.
	4. Macros can have variables embedded in them; allowing you to modify a macro command at executio...
	5. Macros can contain more than one command, allowing a mini-script capability.
	6. Macros may be executed repeatedly using the repeat command.

	In the following sections we’ll describe:
	1. How to define, edit and execute a macro command.
	2. How to document a macro command.
	3. How to save a collection of macro commands in a file and include the macros in a later dbView ...
	4. How to include variables in a macro command.
	16.1 Defining And Running A Macro

	Macros are defined using the macro command:
	macro <name> [<history number>]
	When you declare a macro, you give it a unique name. The name can include upper and lower case le...
	Here is a simple example definition of a macro named GLL:
	1> macro GLL
	---Command
	1> # This command displays the mission acronym and
	2> # spacecraft ID for the Galileo project
	3>
	4> set timer off
	5> print
	6> print “Galileo Mission Information”
	7> select mission, scId, objective
	8> from missions
	9> where mission = "GLL"
	10> go
	11> done
	Let’s take a moment to look at the parts of the macro. The first line has the macro command follo...
	---Command
	That’s the signal that the macro specification should follow. A macro can contain a mixture of:
	• dbView commands. Line 4
	• Database commands. Lines 7–10
	• References to previously defined macros.
	• Bank lines to separate groups of commands within the macro. Line 3.
	• Comment lines that begin with zero or more white spaces followed by the pound sign character “#...
	• Print commands that display their contents when the macro is executed. Lines 5–6. Note that the...
	Once complete, we end a macro by typing the word “done” on a line by itself. dbView will set you ...
	A few things to note:
	• You can cancel a macro command like any other command using <control-c>.
	• Database commands are terminated with “go” just as they are in dbView’s command buffer. (There ...
	• Comment and blank lines are for internal documentation. Macro print commands display their stri...
	To execute the macro we’ve just created, we type its name as a new command and press return:
	1> GLL
	Galileo Mission Information
	mission scId
	--------------- -----------
	GLL 35
	(1 row(s) affected)
	Macros are dbView commands, so dbView executes them immediately. There is no need to follow the n...
	16.1.1 The Show Macro Command

	Once you have defined some macros, you may want to know refer to them without executing them. You...
	show macro [macro name]
	If you don’t include a macro name, the names of all your currently defined macros are displayed i...
	1> show macro
	- GLL
	- planet
	- test
	Note: If verbose is “on” and you issue the show macro command you’ll see the contents of all of y...
	If you include a macro name with the command, the contents of the macro are displayed:
	1> show macro GLL
	---Command
	# This command displays the mission acronym and
	# spacecraft ID for the Galileo project
	set timer off
	print
	print “Galileo Mission Information”
	select mission, scId
	from missions
	where mission = "GLL"
	go
	Notice that show macro displayed the comment and bank lines we entered in the macro. This is for ...
	16.1.2 Editing A Macro

	You can edit a macro while you’re defining it or later on in a dbView session.
	If, while you’re defining a macro, you want to make changes on a line that’s completed, just type...
	1> macro mission
	---Command
	1> # This command displays the mission acronym and
	2> # spacecraft ID for the Galileo project.
	3> select mission, scId
	4> form missions ¨ misspelled “from”
	5> edit ¨ start editing the macro
	Once you return from the editor, dbView redisplays the command, leaving you with an entry point o...
	Once you have created a macro you can still edit it using the edit macro command:
	edit macro <macro name>
	For example, to edit the macro we have just created, we would enter the command:
	1> edit macro GLL
	and the command would appear in the editor looking like this:
	# This command displays the mission acronym and
	# spacecraft ID for the Galileo project
	set timer off
	print
	print “Galileo Mission Information”
	select mission, scId
	from missions
	where mission = "GLL"
	go
	In the editor, we’ll add a field to the select statement and return to dbView.
	# This command displays the mission acronym and
	# spacecraft ID for the Galileo project
	set timer off
	print
	print “Galileo Mission Information”
	select mission, scId, objective ¨ this was added
	from missions
	where mission = "GLL"
	go
	Now when we execute the macro, we get this:
	1> GLL
	Galileo Mission Information
	mission scId objective
	------------------------ -------- ------------------------
	GLL 35 Jupiter
	(1 row(s) affected)
	16.1.3 Using Edit Macro To Create Another Macro

	You can use an existing macro the basis for creating a new macro with the edit macro command. To ...
	edit macro <macro name> [<new macro name>]
	For example, if we wanted a macro that would write the results the GLL macro to a file, we could ...
	1> edit macro GLL GLLSave
	The editor would show the contents of the GLL macro which we want to modify.
	# This command displays the mission acronym and
	# spacecraft ID for the Galileo project
	set timer off
	print
	print “Galileo Mission Information”
	select mission, scId, objective
	from missions
	where mission = "GLL"
	go
	We now make changes with the editor so the new macro looks like this:
	# This command displays the mission acronym and
	# spacecraft ID for the Galileo project
	open dataFile gll.data
	print
	print “Galileo Mission Information”
	select mission, scId, objective
	from missions
	where mission = "GLL"
	go
	close dataFile
	Now when we issue the show macro command, we see that the new macro “GLLSave”. Our old macro, “GL...
	1> show macro
	- GLL
	- GLLSave
	- planet
	- test
	16.2 Using The History List In A Macro Command

	You can begin a macro with a statement in the history list by placing the history number after th...
	1> history
	---1
	select mission, scId
	from missions
	where mission = "GLL"
	---2
	select mission, scId, objective
	from missions
	where mission = "GLL"
	1> macro GLL 2 ¨ addition of the history number
	1> select mission, scId, objective
	2> from missions
	3> where mission = "GLL"
	4> go
	5> done
	In the example, we selected the second statement from the history list for inclusion in the macro...
	16.3 Using Macros To Redefine dbView Commands

	All of dbView’s commands are spelled out completely. While this helps make them self- explanatory...
	Macros have an additional ability that we haven’t discussed yet. If you add text following a macr...
	As an example, we’ll look at the history command. First we create a macro to redefine history to ...
	1> macro h
	---Command
	1> history
	2> done
	Now, when we type “h”, we get the history list:
	1> h
	---18
	select mission, scId
	from missions
	---19
	select name
	from planets
	order by number
	---20
	h
	1>
	Since macros concatenate any trailing characters on the command line to the macro, we can use the...
	1> h 18
	1> select mission, scId
	2> from missions
	3>
	The macro expands to its definition plus the trailing characters to become:
	history 18
	Besides redefining dbView commands, we can use macros to create new ones. Putting the escape comm...
	Create a macro to list our current directory under Unix:
	1> macro ls
	---Command
	1> escape ls -l
	2> done
	Now we can use the macro to list files:
	1> ls *.macros
	-rw-r--r-- 1 franklin 660 Mar 24 11:17 example.macros
	(Notice that we are again using the feature that a macro will concatenate the string of character...
	Now, create a macro to view a file under Unix:
	1> macro vi
	---Command
	1> escape vi
	2> done
	We can use this macro to view the file we just found using the ls macro:
	1> vi example.macros
	Now let’s incorporate an SQL statement. When we want to see all of the columns in a table we can ...
	1> macro all
	---Command
	1> select * from
	2> done
	Now we can issue the command:
	1> set format list
	1> all missions
	Row 1>
	id = 1
	mission = Cassini
	scId = 72
	objective = Saturn
	flying = 0
	description = The Cassini Mission to Saturn
	created = Jun 22 1993 5:58:10:403PM
	Row 2>
	id = 2
	mission = GLL
	scId = 35
	objective = Jupiter
	flying = 1
	description = The Galileo Mission to Jupiter
	created = Jun 22 1993 5:58:10:460PM
	Row 3>
	id = 3
	mission = MO
	scId = 91
	objective = Mars
	flying = 1
	description = The Mars Observer Mission
	created = Jun 22 1993 5:58:10:476PM
	Row 4>
	id = 4
	mission = VGR
	scId = 0
	objective = NULL
	flying = 1
	description = The Voyager Mission to the outer solar system
	created = Jun 22 1993 5:58:10:493PM
	(4 row(s) affected)
	We could qualify our statement with an SQL WHERE clause also.
	1> all missions where objective = 'Jupiter'
	Row 1>
	id = 2
	mission = GLL
	scId = 35
	objective = Jupiter
	flying = 1
	description = The Galileo Mission to Jupiter
	created = Jun 22 1993 5:58:10:460PM
	(1 row(s) affected)
	Notice that since “all” is a macro, we’ve found a way to execute the SQL statement immediately—we...
	16.4 Using Variables In Macro Definitions

	In the last section, we began to explore the idea of modifying a macro by concatenating text to t...
	In our “GLL” macro we got back information on the Galileo Mission. We can change that macro so we...
	1> edit macro GLL
	In the editor, we change “GLL” to “$mission_name”. Local variables always begin with a dollar sig...
	We also change the text we display when the macro is executed to explain to the user what is expe...
	# This command displays the mission acronym and
	# spacecraft ID for the Galileo project
	set timer off
	print
	print “Display the mission name (acronym), spacecraft ID and”
	print “primary objective (planet) for the mission name”
	print “supplied at the macro's prompt.”
	print
	select mission, scId, objective
	from missions
	where mission = "$mission_name" ¨ the local variable
	go
	Since we’ve now made a general macro that will return information for any mission, we should rena...
	rename macro <current name> <new name>
	For our example, we’ll do this:
	1> rename macro GLL mission
	Now when we execute the updated and renamed macro, we see:
	1> mission
	Display the mission name (acronym), spacecraft ID and
	primary objective (planet) for the mission name
	supplied at the macro's prompt.
	mission_name []: Cassini
	mission scId objective
	------------------- ----------- -----------------------
	Cassini 72 Saturn
	(1 row(s) affected)
	The local variable we defined becomes a prompt that is displayed when we execute the macro. We re...
	select mission, scId, objective
	from missions
	where mission = "Cassini"
	Notice that we includes the local variable within the string quotation marks required by the SQL ...
	16.4.1 Local Variables And Default Values

	When the macro was executed, you may have noticed that the prompt was followed by a pair of squar...
	1> mission
	Display the mission name (acronym), spacecraft ID and
	primary objective (planet) for the mission name
	supplied at the macro's prompt.
	select mission, scId, objective
	mission_name [Cassini]: GLL
	mission scId objective
	--------------- ----------- ---------------
	GLL 35 Jupiter
	(1 row(s) affected)
	We can accept a default value at a prompt by typing <return>, or we can enter a new value as we d...
	There are two types of default values associated with local variables: session and persistent.
	Session Defaults
	Whenever you enter a new value for a local variable, it is saved; and the next time you execute t...
	Persistent Defaults
	A persistent default value acts like a session default, but it is defined in the macro along with...
	We can change the mission macro to include a persistent default value. The values is enclosed in ...
	The persistent default value—we’ve made it “Cassini”—and its local variable are in bold type.
	1> show macro mission
	---Command
	print
	print “Display the mission name (acronym), spacecraft ID and”
	print “primary objective (planet) for the mission name”
	print “supplied at the macro's prompt.”
	print
	select mission, scId, objective
	from missions
	where mission = "$mission_name[Cassini]"
	Notice that the persistent default value in included with the local variable within the quotation...
	We’ve included this macro in our default macro file using the save macro command. Now when we exe...
	dbView, version 1.4, (dblib, milib), 28 Nov 1994
	Copyright 1993, The Jet Propulsion Laboratory. All rights reserved.
	userName [franklin]:
	password:
	server [CATALOGDBS]:
	database [catalog]:
	1> mission
	Display the mission name (acronym), spacecraft ID and
	primary objective (planet) for the mission name supplied
	at the macro's prompt.
	mission_name [Cassini]: ¨ persistent default value
	mission scId objective
	------------------- ----------- -----------------------
	Cassini 72 Saturn
	(1 row(s) affected)
	If we had entered a different value at the prompt, “GLL” for example, the default would change to...
	16.4.2 The Special Local Variable $password

	If you include the local variable $password in a macro, dbView handles it in a special way:
	• When you type in a value at the prompt, the value is not echoed to your screen.
	• There is no default value for the local variable, you must always type it in at the prompt.
	• The variable is special in that dbView reserves the name for special handling.
	$password—all lower case letters—is used when you are executing a command from within dbView that...
	The macro definition is shown below. We’ve highlighted the $password variable in bold type so you...
	1> show macro bcpCommand
	---Command
	print
	print “Loading mission data into the ‘example’ database”
	print “using bcp.”
	print “--Enter the password to be used by "bcp" at the prompt.”
	print
	escape bcp example.dbo.example in mission.dat -c -U sa -P $password -S CATALOGDBS
	Now when we run the macro, we see this:
	1> bcpCommand
	Loading mission data into the ‘example’ database
	using bcp.
	--Enter the password to be used by "bcp" at the prompt.
	password: ¨ value not echoed
	1>
	Note the word ‘example’ is in single quotes in the print string. You can’t use double quotes with...
	(We’ll see this macro used in a broader context when we look at scripts—files than can contain db...
	16.4.3 Summarizing Macro Local Variable Rules
	1. Local variable names can only appear in macro commands.
	2. Variable names begin with a dollar sign.
	3. Variable names can be of any length. The names can include letters of the alphabet, numbers (i...
	4. dbView performs string substitution on variable names, replacing the name with the string supp...
	5. When you execute a macro, dbView uses the macro name as a prompt. Following the prompt, dbView...
	6. The value supplied at a local variable prompt can be any string of characters. dbView accepts ...

	1> theDate
	theDate []: April 14, 1993
	The string, “April 14, 1993”, is the value assigned to the local variable $theDate.
	16.5 Repeated Execution Of Macros

	If you precede a macro with the command word repeat, the macro will be repeatedly executed until ...
	1> create table example (
	2> id int,
	3> name varchar(15)
	4>)
	5> go
	Next, we’ll create the macro that inserts the data:
	1> macro doExample
	---Command
	1> insert into example (id, name)
	2> values ($id, '$name')
	3> go
	4> done
	Finally, we execute the macro, preceding the macro’s name with the repeat command so it will exec...
	1> repeat doExample
	id []: 1
	name []: Franklin
	(1 row(s) affected)
	id [1]: 2
	name [Franklin]: Washington
	(1 row(s) affected)
	id [2]: 3
	name [Washington]: Jefferson
	(1 row(s) affected)
	id [3]: ^C ¨ this gets us out of the loop
	1>
	To finish off the example, we retrieve the information we just stored in the example table:
	1> select * from example
	2> go
	id name
	----------- ---------------
	1 Franklin
	2 Washington
	3 Jefferson
	(3 row(s) affected)
	16.6 Including, Saving, And Replacing Macro Definitions
	16.6.1 Saving Macros To A File

	Once we’ve defined a macro, we’d like to save it so we can use it in a later dbView session. To d...
	save macro <file name> <macro name>
	If the file name is new, dbView creates it and writes the macro to the file. If the file exists, ...
	For example, to save the mission macro to the file example.macros, we do this:
	1> save macro example.macros mission
	16.6.2 Removing A Macro Command

	If you want to remove a macro definition, use the command:
	remove macro <macro name> [<macro file name>]
	This command removes the macro definition from the dbView session. If you include the name of a m...
	1> show macro GLL
	---Command
	# This command displays the mission acronym and
	# spacecraft ID for the Galileo project
	set timer off
	print
	print “Galileo Mission Information”
	select mission, scId, objective
	from missions
	where mission = "$mission_name"
	go
	1> remove macro GLL
	1> show macro GLL
	Unknown macro name "GLL".
	After executing the remove macro command, you can no longer reference the macro. If you do, dbVie...
	If we include a file name, the macro is removed from the file as well. For example:
	1> directory /usr/franklin
	1> remove macro GLL example.macros
	The remove macro command removes a macro from a file even if the macro is no longer defined withi...
	We could have included a directory path in the last example if dbView was not currently “looking ...
	1> remove macro GLL /usr/franklin/example.macros
	16.6.3 Exiting From dbView Once You’ve Made Changes To Macros

	Once you’ve made changes to macros, you probably want to save them before exiting from dbView. If...
	1> exit
	You have made changes to macro definitions. They can be saved
	using the "save macro" command. The following are the changed
	macros:
	GLL
	exit anyway? { y | n } [n]: ¨ typing <return> accepts the default–”no”
	1> save macro example.macros GLL
	dbView will prompt you before exiting if you’ve used any of the following command to create or ch...
	global macro edit macro rename macro
	To exit without saving macros, you could answer “y” (yes) to the prompt in the example above, or ...
	1> exit ignore set global macro
	In this case, you force dbView to exit without checking to see if you’ve created macros. This for...
	16.6.4 Including A Macro File

	Once a set of macros is saved to a file, we can include the macros in our dbView session by using...
	include macro <file name>
	For example:
	1> include macro example.macros
	or if the macro is not in dbView’s current directory
	1> include macro /usr/franklin/example.macros
	You can use the include macro command to include macros from as many files as you like. Macro loa...
	1. As new macros are loaded, the old macro definitions remain defined.
	2. If a new macro has the same name as an old one, the new one replaces the old one unless the ol...
	16.6.5 The Default Macro File

	You can also load one or more macro files when you start dbView by specifying the file paths as d...
	set defaultMacroFile <file specification> … [<file specification>]
	The file specification includes the entire directory path along with the file name. If you includ...
	For example, if we wanted to include our standard set of macros plus those used just for this tut...
	1> set defaultMacroFile /usr/franklin/standard.macros /usr/ franklin/example.macros ¨ a single wr...
	Now, the next time you start dbView, the macros in these files are loaded immediately, ready for ...
	When you set the path name of a default macro file, dbView checks to determine if it can find the...
	1> set defaultMacroFile /usr/junk
	WARNING: Unable to open defaultMacroFile:
	/usr/junk.
	Your default macros cannot be loaded at startup.
	MDMS SYSTEM WARNING candide::dbView Fri Apr 23 11:07:53 1994
	(2) No such file or directory
	Also, if some change was made to your configuration that prevents dbView from reading the default...
	% dbView
	dbView, version 1.4, (dblib, milib), 28 Nov 1994
	Copyright 1993, The Jet Propulsion Laboratory. All rights reserved.
	WARNING: Could not open default macro file:
	/usr/franklin/example.macros.
	MDMS SYSTEM WARNING candide::dbView Fri Apr 23 11:03:54 1994
	(2) No such file or directory
	16.6.6 Replacing A Set Of Macros

	If you are loading more than one macro file and you don’t want the macro definitions to be cumula...
	replace macro [<file name>]
	In this case the macros from the new file are loaded once all of the old macros are removed from ...
	1> include macro example.macros
	1> replace macros new.macros
	16.6.7 Sharing Macro Files

	dbView stores macros in ASCII formatted files so that you can use them on different types of mach...
	17 Global Variables

	We have already introduced macro variables. However, we left something out at that time to simpli...
	Global variables are used to define a value that is frequently used across more than one macro. T...
	1. A global variable is defined within dbView using the global command and the global variables v...
	2. Global variables are independent of particular macros and can be reference by any macro during...
	3. Once defined and included in a macro, a global variable’s value is automatically substituted i...
	4. Global variables are saved, loaded and replaced, along with macros, using the commands save ma...
	17.1 The global Command

	A global variable is defined with the global command:
	global <name> <global variable> [<value>] | <value>
	The global command is a single line command, and therefore executed immediately when you press th...
	For example:
	1> global object mission
	The global variable object is assigned the value “mission”.
	In the next example,
	1> global fileName $$object.tmp
	the global variable fileName is assigned the value of the global variable object concatenated wit...
	A global variable like object is the name of variable. When the dollar signs are placed in front ...
	1> global object missions
	and when you use a global variable, you reference the value by proceeding the variables name with...
	1> global fileName $$object.tmp
	17.1.1 Seeing Global Variable Assignments

	You can see the definition of global variables using the command:
	show global [<variable>]
	For example:
	1> show global
	- fileName = $$object.tmp
	- object = missions
	Or, if you only want to see a specific one:
	1> show global fileName
	- fileName = $$target.tmp
	17.1.2 The Expand Global Command

	Notice that the definition of fileName is “$$target.tmp”. If you want to fully expand the global ...
	expand global <global variable>
	For example:
	1> expand global fileName
	missions.tmp
	This command is useful for debugging complicated global variables.
	You can also expand a macro to see the run-time value of global variables referenced in the macro...
	17.2 Referencing Global Variables In Macros

	Once defined, you can reference a global variable in any number of macros. In the following examp...
	The example assumes that we’ve already defined the global variables object and fileName.
	1. Create an SQL SELECT statement that will retrieve all of the data from the table referenced by...

	1> macro showTable
	---Command
	1> print “Select all of the data from the table whose”
	2> print “name is assigned to the global variable”
	3> print "‘object’.”
	4> select *
	5> from $$object
	6> go
	7> done
	2. Open a data file using the value of fileName, the global variable that includes a reference to...

	1> macro openFile
	---Command
	1> open dataFile $$fileName
	2> done
	3. Define a macro to remove the file opened by the previous macro. (This macro uses the dbView es...

	1> macro removeFile
	---Command
	1> escape rm $$fileName
	2> done
	We’ll show a practical application that moves a table from one database to another using these gl...
	17.2.1 The Expand Macro Command

	Once global variables are defined and reference in a macro, you can see the run-time value of the...
	expand macro <macro name>
	As an example, we’ll define our global variables again, then look at the macro “openFile” using b...
	1> global fileName $$object.tmp
	1> global object missions
	1> show macro openFile
	---Command
	open dataFile $$fileName
	1> expand macro openFile
	open dataFile missions.tmp ¨ the value at run-time
	Show macro gives the definition of the macro, while expand macro shows its current evaluated stat...
	17.3 The Remove Global Command

	Just as there is a remove macro command to remove a macro definition, so there is an remove globa...
	remove global <name> [<macro file name>]
	Global variables are stored along with the macros that use them, so the file name used with the c...
	For example:
	1> remove global object example.macros
	or
	1> remove global object /usr/franklin/example.macros
	Note: Once we’ve removed the global variable object, any macro that reference the global variable...
	17.4 Undefined Global Variables In Macros

	If you execute a macro containing an undefined global variable, you’ll get an error message like ...
	1> set verbose on
	1> showTable
	Select all of the data from the table whose name is
	assigned to the global variable "object".
	Global variable 'object' not defined. Macro command
	aborted.
	17.5 Global Variables And Macro Files

	Since global variables are associated with macros, when you have a macro, the global variables re...
	When you execute an include macro command, global variables in the file are also brought in and d...
	When you execute a replace macro command, it removes all of the current global definitions in you...
	If you create a global variable that is not associated with a macro, there’s no way to save it be...
	18 Finding Out About Database Objects
	18.1 Sybase Database Objects

	The show db command is used to display information about objects in the current database including:
	• tables—both user and system defined
	• views
	• stored procedures
	• triggers
	• defaults
	• rules
	The syntax for the command is:
	show db [<database object name>]
	If you don’t include the name of an object in the database, dbView returns the list of all object...
	1> show db
	defaults :
	default_timeOfDay
	stored procedures :
	showMissionObjective showMissions
	showPlanets
	rules :
	rule_zeroOne
	system tables :
	sysalternates syscolumns
	syscomments sysdepends
	sysgams sysindexes
	syskeys syslogs
	sysobjects sysprocedures
	sysprotects syssegments
	systypes sysusermessages
	sysusers
	triggers :
	missionsDelTrig missionsInsUpdTrig
	user tables :
	missions planets
	views :
	missionObjective
	You can then use the list to get more specific information about a particular object, like the mi...
	18.1.1 Table Information

	Suppose we include the object name “missions” with the show db command. dbView would then display...
	1> show db missions
	Table: missions
	Owner: dbo
	colid
	column
	data type
	length
	nulls?

	1
	id
	id
	4
	No
	2
	mission
	name
	30
	No
	3
	scId
	id
	4
	No
	4
	objective
	name
	30
	Yes
	5
	flying
	flag
	1
	No
	6
	description
	description
	255
	Yes
	7
	created
	timeOfDay
	8
	No
	The first line tells us that “missions” is a table and that its owner is “dbo” (database owner). ...
	If you include the verbose option, you see the same display just described. Following that, you’l...
	1. Indexes—The name of the index is given followed by the names and order of the columns included...
	2. Keys—Foreign and common key definitions. Key definitions are important because they show you h...
	3. Capabilities—This is the list of actions you can carry-out on the object. For example, if you ...
	4. Defaults—The columns in the table having default values associated with them are listed along ...
	5. Rules—The columns in the table having rules associated with them are listed along with the nam...
	6. Triggers—Tables can have insert, update and delete triggers associated with them. If any of th...
	7. Related Stored Procedures—Any stored procedures that reference the table are listed next. To g...

	Here we repeat the show db command for the missions table, but this time we’ll execute the comman...
	1> set verbose on
	1> show db missions
	Table: missions
	Owner: dbo
	colid
	column
	data type
	length
	nulls?

	1
	id
	id
	4
	No
	2
	mission
	name
	30
	No
	3
	scId
	id
	4
	No
	4
	objective
	name
	30
	Yes
	5
	flying
	flag
	1
	No
	6
	description
	description
	255
	Yes
	7
	created
	timeOfDay
	8
	No
	Indexes:
	- missionPK1 on column(s) mission
	clustered, unique located on default
	- missionFK1 on column(s) objective
	nonclustered located on default
	Keys:
	- foreign: mission.objective -> planets.name
	- common: missions.objective <-> planets.name
	Capabilities:
	- select
	- insert
	- update
	Defaults:
	- default_timeOfDay on column created
	Rules:
	- rule_zeroOne on column flying
	Triggers:
	-insert: missionsInsUpdTrig
	-update: missionsInsUpdTrig
	-delete: missionsDelTrig
	Related Stored Procedures:
	- showMissionObjective
	- showMissions
	18.1.2 View Information

	SQL views are virtual tables that offer a view of data contained in one or more physical tables w...
	If verbose mode is not active, we see:
	1> show db missionObjective
	View: missionObjective
	Owner: dbo
	colid
	column
	data type
	length
	nulls?

	1
	mission
	name
	30
	No
	2
	scId
	id
	4
	No
	3
	name
	name
	30
	Yes
	4
	lgtYrsFromSun
	float
	8
	Yes
	5
	hrsPerRotation
	real
	4
	Yes
	6
	yrsPerRev
	real
	4
	Yes
	When we’re in verbose mode, we get additional information, including:
	1. Capabilities—This is the list of actions you can carry-out on the view. For example, if you ha...
	2. Associated Tables—The names of the tables referenced by the view.
	3. Associated Procedures—The names of any stored procedures that reference the view.
	4. Description—The SQL statement that defines the view, along with any header information associa...

	For example:
	1> set verbose on
	1> show db missionObjective
	View: missionObjective
	Owner: dbo
	colid
	column
	data type
	length
	nulls?

	1
	mission
	name
	30
	No
	2
	scId
	id
	4
	No
	3
	name
	name
	30
	Yes
	4
	lgtYrsFromSun
	float
	8
	Yes
	5
	hrsPerRotation
	real
	4
	Yes
	6
	yrsPerRev
	real
	4
	Yes
	Capabilities:
	- all
	Related Tables:
	- missions
	- planets
	Related Stored Procedures
	- showMissionObjective
	/*
	** VIEW
	** missionObjective
	**
	** FUNCTION
	** Joins information in the missions and objectives tables.
	*/
	create view missionObjective (mission, spacecraft, planet,
	lgtYrsFromSun, hrsPerRotation, yrsPerRev)
	as
	select mission, scId, name, lgtYrsFromSun,
	hrsPerRotation, yrsPerRev
	from missions, planets
	where missions.objective *= planets.name
	18.1.3 Stored Procedure Information

	When dbView displays information about a stored procedure, it states the name of the procedure an...
	1> show db showMissions
	Procedure: showMissions
	Owner: dbo
	colid
	name
	data type
	length

	1
	@missionName
	name
	30
	In verbose mode, dbView includes the following additional information:
	1. Capabilities—For a stored procedure, the capability you have is either “execute” or “none”.
	2. Text—This is the text of the stored procedure, including any header information associated wit...

	1> set verbose on
	1> show db showMissions
	Procedure: showMissions
	Owner: dbo
	colid
	name
	data type
	length

	1
	@missionName
	name
	30
	Capabilities:
	- execute
	/*
	** PROCEDURE
	** showMissions [missionName]
	**
	** FUNCTION
	** Show mission information. If name is supplied,
	** information for that mission.
	*/
	create procedure showMissions
	@missionName name = null
	as
	begin
	print " MISSION INFORMATION”
	print " "
	if @missionName = null
	begin
	select mission, scId, objective, description, created
	from missions
	order by mission
	end
	else
	begin
	select mission, scId, objective, description, created
	from missions
	where mission = @missionName
	end
	end
	18.1.4 Trigger, Default And Rule Information

	Triggers, defaults and rules are integrity objects associated with objects in the database. You f...
	Setting verbose to “on” has no effect for triggers, defaults or rules.
	1> db help rule_zeroOne
	Rule: rule_zeroOne
	Owner: dbo
	/*
	** RULE
	** rule_zeroOne
	**
	** FUNCTION
	** A boolean function. Value must be 0 or 1. The pair can
	** signify binary sets like {no, yes}, {off, on},
	** {not OK, OK}, {stop, go}, etc. The values can also be used
	** for logical tests in programming languages like C.
	*/
	create rule rule_zeroOne as @value in (0, 1)
	18.2 Illustra Database Objects

	Planned but not currently implemented.
	19 Defining and Running Reports

	You can use dbView to define and run simple database reports. By simple report we mean one that c...
	report <file name> [<history number>]
	Creates a report. The report specification is saved in the file whose name you supply. If you inc...
	edit report < file name>
	Once you’ve created a report, you can alter its contents with this command.
	run report < file name> [<report name>]
	This command runs the report using the specification found in the file whose name you supply. If ...
	19.1 Sample Reports

	We’ll use a couple of examples to illustrate how reports are defined and generated. For both of t...
	19.1.1 The Report mission.rpt

	This report was generated using the query:
	select mission, id, scId, description, created
	from missions
	order by mission
	Running the report results in the following two page report. In the first record of the report, w...
	MISSION REPORT

	Cassini Mission IDs - Mission: 1 Spacecraft: 72
	The Cassini Mission to
	Saturn
	Record Creation Date: Jul 28 1993
	9:08:01:730AM

	GLL Mission IDs - Mission: 2 Spacecraft: 35
	The Galileo Mission to
	Jupiter
	Record Creation Date: Jul 28 1993
	9:08:01:790AM
	Wed Jul 28 09:45:19 1993 Page: 1
	Table 2: First Page Of The Report

	MO Mission IDs - Mission: 3 Spacecraft: 91
	The Mars Observer
	Mission
	Record Creation Date: Jul 28 1993
	9:08:01:810AM

	VGR Mission IDs - Mission: 4 Spacecraft: 0
	The Voyager Mission to
	the outer solar system
	Record Creation Date: Jul 28 1993
	9:08:01:840AM
	Wed Jul 28 09:45:19 1993 Page: 2
	Table 3: Second Page Of The Report

	The specification for the report is listed below. Each section of the report specification starts...
	We’ll go through each section and explain what effect it had on the report’s output.
	---Database command:
	select mission, id, scId, description, created
	from missions
	order by mission
	go
	---Report title:
	MISSION REPORT
	go
	---Field header:
	go
	---Field format:

	>>>>>>>>>>>> Mission IDs - Mission: <<<< Spacecraft: <<<<
	<<<<<<<<<<<<<<<<<<<<<<<<
	Record Creation Date: <<<<<<<<<<<<<<<<<<<<<<<<<
	go
	---Footer:
	$date Page: $page
	go
	---Page length [66]:
	18
	---Mail to:
	washington@presidents.gov
	jefferson@presidents.gov
	go
	---Printers:
	lpr -Plw
	go
	---End.
	1. Database command

	This section contains the query statement used to create the report. Here we used an SQL SELECT s...
	2. Report title

	This is the information that will appear at the top of the first page of the report. Our example ...
	3. Field header

	This is the information that appears at the top of each page in the report—normally its the field...
	4. Field format

	This is the section where you specify the format of the data returned by the query. The format ca...
	Data is returned in those areas of the specification that contain character strings like:
	<<<<<<<<<< ¨ left justified
	or
	>>>>>>>>>> ¨ right justified
	Strings of “>” characters will right justify the retuned results in the field, and string of “<“ ...
	The two field formats shown above convert any database attribute to a character string, including...
	The attribute created is a date, also placed in a left justified character field. The date and ti...
	To get a feel for how the specifications are used to format a report, look at the example report ...
	Notice that there is one format specification for each attribute in the database query statement ...
	If there are fewer format specifications than query attributes, you will receive an error message...
	1> run report example.rpt
	Report specified 1 field format(s).
	There were 2 specified in your database statement.
	And if there are more format specifications than query attributes, the error message will read li...
	1> run report example.rpt
	Report specified 3 field format(s).
	There were 2 specified in your database statement.
	The last two format specifications deserves some special notice. The formats are not large enough...
	Also notice that the last field specification accepts values from the table attribute, created, w...
	5. Footer

	The footer contains information that appears at the end of each page. Like all sections of the re...
	• $date—The current date that looks like: Wed Jul 28, 93
	• $longdate—The current data and time that looks like: Wed Jul 28 09:45:19 1993
	• $page—The current page number of the report.
	You can mix special variables and “boiler plate”. In the example we used:
	Page: $page
	for the page numbers in the finished report.
	6. Page length [66]

	This is the length of a report page. By default, it is 66 lines. For the example, we set the page...
	7. Mail to

	This is the list of people or groups to which the report is automatically sent when you generate ...
	1> set mailReport off
	8. Printers

	This is the list of printers—one specification per line—to which the report is automatically sent...
	If you don’t want the printer list used for a particular report, use the set command:
	1> set printReport off
	Now that we have completed the specification, look at it as a whole. Notice that the text and fie...
	To run the report, we enter the command:
	1> run report mission.rpt
	In this example we’ve seen:
	• The sections of dbView’s report.
	• How a report is formatted using the different sections.
	• The use of field specifications and “boiler plate” to create a multiline report.
	• The wrap facility of left justified field specifications.
	• The use of the special footer variables $date and $page.
	• Page specifications.
	• Mail list and printer specifications.
	19.1.2 The Report planets.rpt

	The next example uses the planets table to illustrate some advanced reporting features. As in the...
	This report will use a macro command in place of an SQL statement. Since we want the macro’s comm...
	Also, we’ll retrieve numbers into a right justified character field as well as into numeric forma...
	We control the precision and numeric style of numbers returned in character fields with the set c...
	1> set verbose on
	1> set doublePrecision 4
	1> set reals g
	1> run report planets.rpt
	The macro ‘planetList’ retrieves information about the
	planets supplied as a list at the prompt. The list
	should be formatted like the following example:
	‘Jupiter’, ‘Saturn’, ‘Venus’
	planets [‘Jupiter’, ‘Saturn’, ‘Earth’, ‘Venus’]:
	Since the report contains a macro and verbose is set to “on”, dbView displays the macro’s comment...
	1> set verbose on
	1> show macro planetList
	- planetList
	---Command
	print “The macro ‘planetList’ retrieves information about the”
	print “planets supplied as a list at the prompt. The list”
	print “should be formatted like the following example:”
	print “ ‘Jupiter’, ‘Saturn’, ‘Venus’”
	select number, name, lgtYrsFromSun, hrsPerRotation, yrsPerRev
	from planets
	where name in ($planets)
	order by number
	go
	On the next page we’ll show the output of the macro and then that of the report.
	The results retrieved using the macro planetList:
	number -------
	name -------------

	lgtYrsFromSun -------------
	hrsPerRotation

	yrsPerRev

	2
	Venus

	1.142e-05
	NULL
	0.616
	3
	Earth

	1.585e-05
	24.0
	1.00
	5
	Jupiter

	8.234e-05
	10.0
	12.3
	6
	Saturn

	0.0001510
	10.3
	29.0
	(4 row(s) affected)

	The same results retrieved using the report planets that calls the macro planetList

	P l a n e t L i s t

	Num. Name Light Years From Earth Hours Years Per
	The Sun Per Rotation Revolution
	____ ____________ ______________ _____________ ____________
	2 Venus 1.142e-05 NULL 0.62
	3 Earth 1.585e-05 24.000 1.00
	5 Jupiter 8.234e-05 10.021 12.34
	6 Saturn 0.0001510 10.273 29.02

	Mon Jun 07 16:07:19 1993 -1-
	Table 4: The Formatted Report

	The specification for the report looks like this:
	---Database command:
	planetList
	go
	---Report title:

	P l a n e t L i s t

	go
	---Field header:
	Num. Name Light Years From Earth Hours Years Per
	The Sun Per Rotation Revolution
	____ ____________ ______________ _____________ ____________
	go
	---Field format:
	#### <<<<<<<<<<<< >>>>>>>>>>>>>> ########.### ####.##
	go
	---Footer:

	$longdate -$page-
	go
	---Page length [66]:
	20
	go
	---Mail to:
	go
	---Printers:
	go
	---End.
	1. Database command

	We’ve supplied the name of the macro planetList instead of an SQL or stored procedure statement i...
	2. Report Title

	We have again included a multiline header for this report.
	3. Field header

	In the last example report, we didn’t use the Field header section. Here we have expanded the tab...
	4. Field format

	The Num. field uses the number format to align numbers in a right justified column.
	The Light Years From The Sun column returns a double precision number into a right justified text...
	The third field is double precision like the second, but it has its own specific number format. S...
	The third field also contains a NULL value, which is printed as such.
	The last field is like the third field except that it is a single precision number and has a spec...
	5. Footer

	The left side of the footer begins with a line that separates the report’s body from the footer. ...
	6. Page length [66]

	We have set the page size to 20 to give you some idea of what a full page would look like. Notice...
	7. Mail to

	We have not included a mailing list for this report. We simply supplied the “go” terminator to en...
	8. Printers

	We have not included a printer list for this report.
	In this report we have looked at the following additional capabilities of the report function:
	• The use of macros in reports.
	• Number formats using both character and number format specifications to change the representati...
	• The interaction of the set commands and the right justified character format when numbers are r...
	• The use of multiple lines in the footer of a report and the special variable $longdate.
	19.2 Summarizing dbView’s Report Writing Capabilities

	Now that you’ve seen a couple of sample reports, we summarized the report functions capabilities ...
	• Each section of a report specification is terminated with dbView’s “go” terminator. If a sectio...
	• The Database command section can contain an SQL SELECT statement, a stored procedure or a dbVie...
	• The report only formats data returned as a single table of information; however, queries produc...
	• All of the format sections can contain multiple format lines.
	• The Field format section can contain both boiler plate and field format specifications.
	• Attributes in the database query map to field specifications. The mapping starts with the first...
	• The number of characters in a format specification is the maximum number of characters used by ...
	• You can include the current date, date and time and page number in the footer section of a repo...
	• By default a report contains 66 lines, but you set the number yourself.
	• You can include a list of eMail addresses and printers to be used when the report is generated....
	• Reports are saved as files that are read into dbView when you edit or run a report.
	19.2.1 Report Functions

	• report <file name> [<history number>]—Create a new report.
	• edit report <file name>—Edit an existing report.
	• run report <file name> [<report name>[—Run the report whose specification is in the named file....
	19.2.2 Formatting Character Strings

	There are two character formats for reports which are described in the following table:
	Format
	Examples
	Description
	<<<<<<<<<<
	Jupiter
	1234
	Mar 11 1993 8:42:02:120AM
	The Planet Jupiter, the major target for the Galileo
	Mission
	Left justified character strings. Any data type can be represented as a string of characters, inc...
	>>>>>>>>>>
	Jupiter
	1234
	Mar 11 1993 8:42:02:120AM
	Right justified strings. Any data type can be represented as a string of characters, including da...
	19.2.3 Formatting Numbers

	Numbers can be formatted either as converted character strings or directly as numbers using the f...
	Format
	Examples
	Description
	####
	1234
	Integers returned in number format. The values are right justified.
	####.###
	1234.123
	12.123
	1234.123
	Real numbers returned in decimal number format. Decimal points line-up in this format. Also, the ...
	>>>>>>>>>
	1234 1234.123 0.1234E-6
	Numbers returned in right justified character format. The command set real, set singlePrecision a...
	Note: You must supply enough characters in the format string to accommodate the “E” notation if y...
	<<<<<<<<<<
	1234
	1234.123 0.1234E-6
	Numbers returned in left justified character format The commands set real, set singlePrecision an...
	Note: You must supply enough characters in the format string to accommodate the “E” notation if y...

	Numbers returned in character format fields are effected by the following dbView set commands:
	set reals { f | e | E | g | G }
	set singlePrecision { on | off }
	set doublePrecision { on | off }
	19.2.4 Special Variables Used In Report Footers

	The following table summarizes the special variables that can be used in report footers.
	Special Variable
	Examples

	$date
	Fri Jun 04, 93

	$longdate
	Mon Jun 07 16:07:19 1993

	$page
	1 ($page)
	-1- (-$page-)
	Page: 1 (Page: $page)
	19.2.5 Options For Report Printing and Mailing

	If your report contains a print command or a mail list, the report will execute these subcommands...
	set printReport {on | off}
	set mailReport {on | off}
	Since these are set commands, their values are remembered by dbView from session to session—the a...
	When you run a report that has a mail list or printer list associated with it, dbView will tell y...
	“Report mailed” or “Report not mailed; mailReport setting is turned off”
	“Report sent to the printer” or “Report not printed; printReport setting is turned off”.
	These messages are only printed for those cases where a mail or printer list was specified.
	19.2.6 More About The Print Section

	When you include a print specification in a report, dbView concatenates the name of the file to p...
	If you are using a print command that must include a file specification within the command, you c...
	1. Open a data file just before you run the report.
	2. Run the report.
	3. Close the data file.
	4. Execute your print command.
	5. Remove the data file containing the report.

	All of these operations can be placed in a dbView script file and executes by a single script com...
	19.2.7 Cancelling A Report Specification Command

	When you begin a report specification, dbView opens a file for the specification. If you abort th...
	19.2.8 Error You May Encounter When Using Report Commands
	1. If you supply the report command the name of a file that already exists, the command is aborted.

	1> report mission.rpt
	File mission.rpt already exists. Report definition
	aborted.
	2. The number of field format specifications must match the number of attributes returned by the ...

	If there are fewer format specifications than query attributes, dbView displays an error message:
	1> run report example.rpt
	Report specified 1 field format(s).
	There were 2 specified in your database statement.
	If there are more format specifications than query attributes, the error message is like:
	1> run report example.rpt
	Report specified 3 field format(s).
	There were 2 specified in your database statement.
	3. If you have altered the sections of a report or entered a specification that dbView does not u...

	1> run report bad.rpt
	Invalid report file. Could not find section:
	---Field format:
	4. If a right justified “>” or numeric “#” field specification is not large enough for a value, t...

	P l a n e t L i s t

	Num. Name Light Years From Earth Hours Years Per
	The Sun Per Rotation Revolution
	____ ____________ ______________ _____________ ____________
	2 Venus **** NULL 0.62
	3 Earth **** ***** 1.00
	5 Jupiter **** ***** 12.34
	6 Saturn **** ***** 29.02

	Tue Jun 08 16:45:24 1993 -1-
	Table 5: The Formatted Report With Numeric Overflow
	5. If the query associated with a report fails, you will see an error message following any heade...

	1> run report bad.rpt
	MISSION REPORT
	MDMS DBS WARNING busstop::dbView Tue Jun 8 16:38:03 1993
	(Db: jar, MsgNo: 102, Svr: 15, St: 1)
	Incorrect syntax near 'missions'.
	Report specified 5 field format(s).
	There was 0 specified in your database statement.
	19.3 Using The History List For Report Generation

	When you create a report, you can use a query command that is in dbView’s history list by followi...
	In the following example, we have included the 9th command from the history list as the report co...
	1> report mission.report 9
	When you now press <return>, you will see something like this:
	---Database command:
	1> select mission, scId
	2> from missions
	3> order by mission
	where the SELECT statement was the 9th command in the history list.
	19.4 Hints For Creating Reports

	In this section we provide some hints that may make creating reports easier for you.
	• Use the show db command to get the list of attributes and data types for the tables you want to...
	• Create your query statement before defining a report. Either make a macro or get the statement ...
	• If you want to include comments in your report that will appear at run time, use a macro and in...
	• Use a common suffix for your reports and put them all in one directory. Then make a macro somet...
	1> macro showReports
	---Command
	1> escape ls *.rpt
	2> go
	---Comment
	1> dbView reports.
	2> go
	Then you can get a list of your reports by executing the command:
	1> showReports
	dbView reports.
	mission.rpt planets.rpt
	• Use the report command to enter all of the information needed in the different sections of a re...
	• Take the time to make sure that the number of attributes in the database query matches the numb...
	• If your report depends on the values of set commands or the definitions of macros, put all of t...
	• If you want to run multiple reports as a single document with each report beginning on a separa...
	20 The Script Command

	dbView can execute a set of commands from a file using the script command. The commands can be a ...
	The syntax for the command is:
	script <command file name>
	and an actual command would look like this:
	1> script example.script
	You can also use macro to customize script commands:
	1> macro example
	---Command
	1> script example.script
	2> done
	1> example
	Script can be used to:
	1. Condense a set of commands by placing them in a file and then running the file as a script.
	2. Execute a set of SQL commands. If you want to create a database schema, put the CREATE command...
	3. Execute a set of reports. If you are running multiple reports, put the reports into a script f...
	4. Exporting data. If you commonly retrieve data and store it in a file and then call another pro...
	5. Archiving or moving database sets. You can retrieve data using dbView’s export format and writ...
	6. Run demonstrations. You can but a set of SQL commands in a script file and then run it as a “d...
	20.1 Some Characteristics Of Scripts
	20.1.1 Scripts Can Be Nested

	A script file can execute other script files. That is, within a script file, you can include a co...
	20.1.2 Putting Comments In A Script File

	dbView considers all lines in a script file to be commands. You can enter comments—internal docum...
	1> File: dbView.sql
	2>
	3> This script file creates all of the database objects
	4> used to create the examples in the "dbView Tutorial”
	5> reset
	1>
	As we add text, dbView starts to build a multi-line command; but at some point, we want the text ...
	20.1.3 Pausing In A Running Script

	If you have a set of SQL commands in a script, they are executed as a batch; as soon as one compl...
	1> script leslie.script
	Running script file leslie.script.
	1> select id, scId, objective
	2> from missions
	3> where mission = "GLL"
	4> go
	id scId objective
	----------- ----------- ------------------------------
	2 35 Jupiter
	(1 row(s) affected)
	1> ***
	2> Example using the "leslie" command to pause
	3> in a script file.
	4> ***
	5> reset
	1> leslie
	Please type <return> to continue: ¨ The script pauses here
	1> select id, scId, objective
	2> from missions
	3> where mission = "Cassini"
	4> go
	id scId objective
	----------- ----------- ------------------------------
	1 72 Saturn
	(1 row(s) affected)
	1> End of script file leslie.script.
	20.1.4 Rules To Remember When Running Scripts
	1. All commands requiring a “go” terminator on the command line also require the terminator in th...
	2. If you have a file open—command, data or log file—before you begin running a script; and then ...
	3. Any changes made to the dbView environment in a script file remain once the script file has co...
	20.2 Example Script Files

	To give you an idea of how scripts can be used, we’ll look at three examples:
	1. Loading SQL command into a database.
	2. Generating a report where set and macro commands are used.
	3. Exporting a data set and loading it into another database.
	20.2.1 Loading SQL commands

	Here’s the beginning of the file that creates the database objects used to create the examples in...
	1> script dbView.sql
	**
	**
	** File: dbView.sql
	**
	** Function: Creates objects used for examples in the dbView Tutorial.
	**
	** Creator: J. Rector
	**
	** Created: March, 1993
	**
	**
	reset
	drop table missions
	drop table planets
	drop view missionObjective
	go
	drop procedure showMissionObjective
	drop procedure showMissions
	drop procedure showPlanets
	go
	create table missions
	(
	id id,
	mission shortName,
	scId id,
	objective shortName null,
	flying flag,
	description description null,
	created timeOfDay
)
	go
	20.2.2 Generating And Printing A Report

	In this example, we run a script that generates the “planets” report, see "The Report planets.rpt...
	The script used to create the report sets dbView parameters, includes a macro file used by the re...
	**
	**
	** File: planets.script
	**
	** Function: Set up the environment and then
	** run the report "planets.rpt".
	**
	**
	reset ¨ reset the command buffer after a comment
	** Define the values for the set commands
	** needed by the report.
	reset
	set reals g
	set doublePrecision 4
	set verbose on
	set mailReport off
	set printReport off
	** Include the macro file example.macros.
	** It contains the macro planetList used
	** in the report.
	reset
	include macro example.macro
	** Run the report.
	reset
	run report planets.rpt planets.out
	Now we can run the report using the script file in which these commands are saves:
	1> script planets.script
	The report sets up the dbView environment for the report, setting numeric specifications for real...
	20.2.3 Copying A Database Tables Contents

	This report retrieves all of the data from a database table from one Sybase database server and l...
	This script that makes the transfer uses global variables and macros that generalize the script s...
	We’ll describe the contents of the script in some detail because it brings together many of dbVie...
	Here’s what the script file does:
	1. The first command in the script, set displayScriptCommands off, suppresses the display of most...

	• Macro comments
	• Macro local variable prompts
	• Messages returned to dbView from the operating system.
	You can see from the script that there are many commands in it that we don’t need to see when we ...
	2. Next we have the documentation of the file treated as a comment within the script file. We cre...
	3. The next set of commands in the script are macros and global variable definitions that will be...

	The first macro, getTargetObject, is used to define the value for the global variable object. We ...
	We next use that global variable to create another one named fileName. We’ll use this global vari...
	The next few macros create commands to: open a temporary data file, delete the file and select al...
	We’ve purposely added comments to our macros so they will appear when we run the script—remember,...
	4. The last macro we define:

	macro bcpCommand
	escape bcp example.dbo.$$object in $$fileName -c -U sa -P $password -S MDM1
	go
	Loading data into the "example" database
	using bcp.
	go
	warrants its own description. The line is bold type is the macro command. It escapes to the opera...
	5. We next set the environment:

	• Turn on verbose so macro comments will appear.
	• Set displayRows off so the rows retrieved will not be written to the screen.
	• Set header off so the data file read by bcp will not contain the table header.
	• Set the endField and endRow values explicitly so bcp correctly interprets the end of fields and...
	• Set the format to export so the field and row delimiter are included in the output.
	6. Now the work begins:

	• The macro getTargetTable is executed to assign the name of the table to copy to the global vari...
	• We delete any existing copy of the temporary file we will use with the macro deleteDataFile. (T...
	• Open the temporary data file.
	• Select the data. (Since there’s a data file open, the rows returned will be written to that fil...
	• Close the data file.
	At this point the data has been retrieved and written to the data file in the export format we de...
	7. Next we execute the macro bcpCommand described above. This loads the data from the temporary f...
	8. Once the data is loaded, we:

	• Reset the dbView environment for interactive use.
	• Delete the data file
	• Remove the macros and global variables
	set displayScriptCommands off

	**
	** File: loadData.script
	**
	** Function: Retrieve the rows from a table and
	** load it into the database named "example" for user "dbo"
	** using the Sybase utility "bcp" (bulk copy).
	**
	**
	reset
	** Define a macro that prompt for the name of the file
	** to use when saving and loading data. The file name
	** is stored as a global variable and used in macros
	** that open the data file and load the database.
	reset
	macro getTargetTable
	global object $targetTable
	go
	Enter the name of the table whose contents are to be
	copied.
	go
	** Use the value of the global variable "object" concatenated
	** with the string "Tmp" to define the global variable
	** "fileName". (We use the escape character '\' to separate
	** the global variable name $$object from the string "Tmp".)
	reset
	global fileName $$object\Tmp
	** Create a macro to open the data file. A macro is
	** used so the global variable holding the name of
	** the file can be expanded into the "open dataFile"
	** command.
	reset
	macro openDataFile
	open dataFile $$fileName
	go
	go
	** Create a macro to delete the data file.
	reset
	macro deleteDataFile
	escape rm $$fileName
	go
	Deleting old data file if it exist.
	go
	** Create a macro to select all fields from a table.
	** We use the global variable $$targetTable as the
	** name of the table in the SELECT statement.
	reset
	macro selectData
	select *
	from $$object
	go
	Selecting data from target table.
	go
	** Create a macro for the bcp command. It will prompt for
	** the Sybase password needed to load the data. The macro
	** also contains the global variable that contains the
	** name of the file to load.
	reset
	macro bcpCommand
	escape bcp example.dbo.$$object in $$fileName -c -U sa -P $password -S MDM1
	go
	Loading data into the "example" database
	using bcp.
	go
	** Set verbose on so macro comments will appear.
	** Set the dbView environment so only rows of data
	** will be written to the file. Set up for export.
	reset
	set verbose on
	set displayRows off
	reset
	set header off
	set endField \t
	set endRow \n
	set format export
	** Get the table name.
	** Delete any old copy of the file. (Don't use this
	** unless you confident that this will not lead to
	** to some untoward event!)
	** Open the file.
	** Retrieve the data.
	** Close the file.
	reset
	getTargetTable
	deleteDataFile
	openDataFile
	selectData
	close dataFile
	** Now load the data into the "example" database.
	** The bcp command is in a macro that will prompt for the
	** password. To execute the bcp command, we "escape" it.
	reset
	bcpCommand
	** Reset the environement for normal interactive use.
	** Remove temporary data file.
	** Remove the macros and globals we've created.
	reset
	set verbose off
	set displayRows on
	set header on
	set format table
	deleteDataFile
	remove macro getTargetTable
	remove macro openDataFile
	remove macro deleteDataFile
	remove macro selectData
	remove global object
	remove global fileName
	Since we want to run this script often, we’ll shorten the command by including it in a macro:
	1> macro loadData
	---Command
	1> script loadData.script
	2> done
	Normally, you can’t include a macro within a macro —we’re calling a script that includes macros f...
	Now we execute the macro which invokes the script and dbView displays the following:
	1> loadData ¨ this is the macro command
	Running script file loadData.script.
	1> set displayScriptCommands off
	Enter the name of the table whose contents are to be
	copied.
	targetTable []: missions
	Deleting old data file if it exist.
	missionsTmp: No such file or directory
	Selecting data from target table.
	Loading data into the "example" database
	using bcp.
	password: ¨ the password is not echoed
	Starting copy...
	4 rows copied.
	Clock Time (ms.): total = 1 Avg = 0 (4000.00 rows per sec.)
	End of script file loadData.script.
	21 dbView’s Batch Mode

	dbView can also be used in batch mode. In this mode, dbView never begins an interactive session; ...
	dbView <script file>
	For example, the following line, specified at the operating system prompt, would execute the cont...
	% dbView nightlyReports.script
	Since there is no way to supply dbView with the passwords to database servers you access from the...
	http://www-mipl/mdms/MDMS.html
	When using the password server, you must have the following defined:
	1. You must be a known user with the password servers Kerberos domain.
	2. Your database server user names and passwords must be defined in the password server.
	3. You must have a valid Kerberos ticket, granted when you successfully execute the Kerberos kini...

	You can also execute dbView in batch mode as a background process. To do this the previous comman...
	% dbView nightlyReports.script &
	Ask you system administrator for help in this area if you’re unfamiliar with background processin...
	22 Error Messages

	Most dbView error messages are printed as text without a header; but when the error comes from Sy...
	22.1 What’s In An Error Message?

	An error message begins with a banner line, optionally followed by a Sybase error number line, an...
	1> select * from noTable
	2> go
	MDMS DBS WARNING milano::dbView Wed Jun 23 16:52:15 1993
	(Db: master, MsgNo: 208, Svr: 16, St: 1)
	Invalid object name 'noTable'.
	22.1.1 The Banner Line

	From the example
	MDMS DBS WARNING milano::dbView Wed Jun 23 16:52:15 1993
	1. The acronym of the group responsible for the message. In dbView this will always be MDMS—the M...
	2. The type of error

	• DBSERVER—The message was generated by a database server.
	• DBLIB—The message was generated by the Sybase interface library.
	• PROGRAM—The message was generated in program code; in this case dbView’s code.
	3. The severity of the error:

	• INFORMATION—Not an error at all; just an informative message.
	• WARNING—The message is a warning.
	• ERROR—More server than a warning, something did not execute correctly.
	• FATAL—More server than an error. You should never see this. If you do, it indicates that the pr...
	4. The next two words are the name of the client machine and the program. The two are separated b...
	5. The last item on the banner line is the date and time of the error.
	22.1.2 The Sybase Error Number

	From the example:
	(Db: master, MsgNo: 208, Svr: 16, St: 1)
	If the error came from Sybase there will be an additional line between the banner and the error m...
	1. The name of the database if you are connected to the server.
	2. The Sybase database server message number (MsgNo).
	3. The severity (Svr) of the error.
	4. The state (St) of the server.

	If the error comes from the Sybase interface library (DBLIB), the line contains the following inf...
	1. The Open Client/C error number.
	2. The severity (Svr) of the error.

	Generally you don’t need to be concerned with the information on this line, but the Sybase docume...
	22.1.3 The Message

	From the example:
	Invalid object name 'noTable'.
	The last item in an error message is the text of the message itself. You want to read this; it te...
	Often you will receive more than one error message. Don’t get unsettled by this. In a client/ ser...
	When reporting a suspected bug, always include all of the error messages generated by the command...
	22.2 Some Common Login Errors

	Connecting to a database server from dbView should be easy; but when you can’t make a connection,...
	In the following examples, we’ve highlighted the important part of each message in bold type.
	22.2.1 Incorrect User Name Or Password

	userName [franklin]: adams
	password:
	server [CATALOGDBS]:
	database [catalog]:
	MDMS DBS WARNING milano::General Delivery Tue Mar 2 10:35:40 1993
	(Db: , MsgNo: 4002, Svr: 14, St: 1)
	Login failed.
	MDMS DBLIB WARNING milano::General Delivery Tue Mar 2 10:35:40 1993
	MsgNo: 20014, Svr: 2
	Login incorrect.
	• Response—You’ve probably supplied an incorrect login value. Use the connect command to enter th...
	22.2.2 Incorrect Server Name Or Server Name Not In Interfaces File

	userName [franklin]:
	password:
	server [CATALOGDBS]: junk
	database [catalog]:
	MDMS DBLIB WARNING milano::General Delivery Tue Mar 2 10:41:08 1993
	MsgNo: 20012, Svr: 2
	Server name not found in interface file.
	MDMS PROGRAM ERROR milano::dbView Tue Mar 2 10:41:08 1993
	dbopen error for SQL command: junk server connection
	• Response—You may have misspelled the server name. Use the connect command to enter the correct ...
	22.2.3 Incorrect Database Name

	userName [franklin]:
	password:
	server [CATALOGDBS]:
	database [catalog]: catlog
	MDMS DBS WARNING milano::dbView Tue Mar 2 10:43:56 1993
	(Db: catalog, MsgNo: 911, Svr: 11, St: 2)
	Attempt to locate entry in sysdatabases for database 'catlog' by name failed - no entry found und...
	MDMS PROGRAM WARNING milano::dbView Tue Mar 2 10:43:56 1993
	dbuse error for SQL command: catlog database
	• Response—You may have misspelled the database name; we typed “catlog” when we wanted “catalog” ...
	22.2.4 Server Is Not Running

	userName [franklin]:
	password:
	server [CATALOGDBS]:
	database [catalog]:
	MDMS DBLIB MSGFAILED milano::General Delivery Wed Mar 17 11:05:04 1993
	MsgNo: 20009, Svr: 9
	Unable to connect: SQL Server is unavailable or does not exist.
	MDMS PROGRAM ERROR milano::dbview Wed Mar 17 11:05:04 1993
	dbopen error for SQL command: catalog server connection
	• Response—The server is not running so you can not connect to it at this time. Contact your data...
	22.2.5 Can’t Reach Machine Named In Interfaces File

	This is an example where the server name is correct, but the machine name associated with the ser...
	userName [franklin]:
	password:
	server [CATALOGDBS]:
	database [catalog]:
	MDMS DBLIB MSGFAILED milano::General Delivery Tue Mar 2 10:53:21 1993
	MsgNo: 20013, Svr: 9
	Unknown host machine name.
	MDMS PROGRAM ERROR milano::dbView Tue Mar 2 10:53:21 1993
	dbopen error for SQL command: CATALOGDBS server connection
	• Response—The interfaces file you are using is incorrect. Contact your database administrator or...
	Database Bibliography
	The books and manuals listed here offer an introduction to relational databases with special emph...
	If you are new to databases — at least databases that use SQL — and your main goal is to learn ho...
	23 General Relational Database References

	The books in this section are valuable if you want to learn more about relational database concep...
	An Introduction To Database Systems; C. J. Date; Addison–Wesley; Volume I. One of the standard ac...
	Relational Databases: Selected Writings; C. J. Date; Addison–Wesley. A collections of papers on r...
	Principles Of Database And Knowledge–Base Systems; Jeffrey D. Ullman; Volumes I and II. Covers a ...
	Database Security And Integrity; E. B. Fernandex, R. C. Summers, C. Wood; Addison– Wesley. An old...
	24 The SQL Language

	If you need to know enough about databases to query one for data, then these are the books you sh...
	There are many other books in the class. Look around at your favorite technical book store, you m...
	If you are primarily interested in Sybase, you should also look at the books in the next two sect...
	Learning SQL; Wellesley Software; Prentice Hall; ISBN 0-13-528704-9 An entry level introduction t...
	A Visual Introduction to SQL; J. Harvey Trimble, Jr. and David Chappell, Wiley, ISBN 0-471-61684-...
	The Practical SQL Handbook; Judith S. Bowman, Sandra L. Emerson and Marcy Darnovsky; Addison-Wesl...
	SQL & Relational Basics; Fabian Pascal; M&T Books; ISBN 1-55851-063-X A good book to read once yo...
	Introduction to SQL; Rick F. van der Lans; Addison–Wesley; A good introduction to the SQL languag...
	A Guide to the SQL Standard, 3rd Edition; C. J. Date with Hugh Darwen; Addison Wesley. Discusses ...
	25 Books About Sybase

	These books describe the Sybase Database Management System and Sybase’s client/server architectur...
	The Guide To SQL Server; Aloke Nath; Addison–Wesley. This book is about the Microsoft implementat...
	A Guide To Sybase And SQL Server; D. McGoveran with C. J. Date; Addison–Wesley. A good introducti...
	Sybase Architecture and Administration; John Kirkwood and Ellis Horwood; ISBN 0- 13-100330-5. An ...
	26 Sybase Manuals

	The manuals described in this section are some of the ones supplied by Sybase Corporation with th...
	Transact-SQL User’s Guide This is the best, and most complete, introduction to Sybase’s extended ...
	Command Reference Manual. The definitive reference manual for the Transact-SQL language. Each com...
	Open Client DB-Library/C: Reference Manual. The description of the Sybase client interface using ...
	Sybase Installation And Operations How to install and configure Sybase software. Of interested on...
	System Administration Guide. Most things that a Data Administrator needs to know about are covere...
	APPENDIX: A Example Database

	This appendix contains the data found in the missions and planets tables used as examples in the ...
	id
	mission
	scId
	objective
	flying
	description
	created

	1
	Cassini
	72

	Saturn
	0
	The Cassini Mission to Saturn
	Jun 22 1993 5:58:10:403PM

	2
	GLL
	35

	Jupiter
	1
	The Galileo Mission to Jupiter
	Jun 22 1993 5:58:10:460PM

	3
	MO
	91

	Mars
	1
	The Mars Observer Mission
	Jun 22 1993 5:58:10:476PM

	4
	VGR
	0
	1
	The Voyager Mission to the outer solar system
	Jun 22 1993 5:58:10:493PM
	Figure 1: missions Table

	number
	name
	lgtYrsFromSun
	hrsPerRotation
	yrsPerRev

	1
	Mercury
	6.30786185000e-06

	211.284
	0.241100

	2
	Venus
	1.14223444000e-05
	0.616400

	3
	Earth
	1.58548960000e-05

	24.0000
	1.00000

	4
	Mars
	2.42085509000e-05

	24.6640
	1.88200

	5
	Jupiter
	8.23431695000e-05

	10.0210
	12.3430

	6
	Saturn
	0.000151047719000

	10.2730
	29.0250

	7
	Uranus
	0.000303459300000

	10.8010
	84.1100

	8
	Neptune
	0.000475646880000

	15.8980
	165.592

	9
	Pluto
	0.000662567170200
	248.637
	Figure 2: planets Table

	**
	**
	** File: dbView.sql
	**
	** Function: Creates objects used for examples in the dbView User's Guide.
	**
	** Creator: J. Rector
	**
	** Created: March, 1993
	**
	** Owner of objects: dbo
	**

	reset

	**
	** DOMAINS
	**

	reset
	sp_addtype name, "varchar(30)"
	go
	sp_addtype shortName, "varchar(15)"
	go
	sp_addtype flag, "tinyint"
	go
	sp_addtype flagArray, int
	go
	sp_addtype description, "varchar(255)"
	go
	sp_addtype radian, float
	go
	sp_addtype tinyId, tinyint
	go
	sp_addtype id, int
	go
	sp_addtype timeOfDay, datetime
	go

	**
	** DEFAULTS FOR DOMAINS
	**

	reset
	/*
	** DEFAULT
	** default_timeOfDay
	**
	** FUNCTION
	** Uses the current database server time as the default.
	*/
	create default default_timeOfDay as getdate ()
	go
	exec sp_bindefault default_timeOfDay, timeOfDay
	go

	**
	** RULES FOR DOMAINS
	**

	reset
	/*
	** RULE
	** rule_zeroOne
	**
	** FUNCTION
	** A boolean function. Value must be 0 or 1. The pair can signify
	** binary sets like {no, yes}, {off, on}, {not OK, OK}, {stop, go},
	** etc. The values can also be used for logical tests in programming
	** languages like C.
	*/
	create rule rule_zeroOne as @value in (0, 1)
	go
	sp_bindrule rule_zeroOne, flag
	go
	**
	**
	** TABLES
	**
	**
	reset
	/*
	**
	** TABLE
	** missions
	**
	** FUNCTION
	** Example spacecraft mission data used for dbView examples.
	**
	*/
	create table missions
	(
	id id,
	mission shortName,
	scId id,
	objective shortName null,
	flying flag,
	description description null,
	created timeOfDay
)
	go
	create unique clustered index missionPK1 on missions (mission)
	create index missionFK1 on missions (objective)
	go
	sp_primarykey missions, mission
	go
	/*
	**
	** TABLE
	** planets
	**
	** FUNCTION
	** Example table used for dbView examples. Contains information
	** about the planets in the Solar System.
	**
	*/
	create table planets
	(
	number tinyint,
	name shortName,
	lgtYrsFromSun float,
	hrsPerRotation real null,
	yrsPerRev real null
)
	go
	create clustered index planetsPK1 on planets (name)
	go
	sp_primarykey planets, name
	go
	sp_foreignkey missions, planets, objective
	go
	sp_commonkey missions, planets, objective, name
	go
	**
	**
	** VIEWS
	**
	**
	reset
	/*
	** VIEW
	** missionObjective
	**
	** FUNCTION
	** Joins information in the missions and objectives tables.
	*/
	create view missionObjective (mission, spacecraft, planet, lgtYrsFromSun,
	hrsPerRotation, yrsPerRev)
	as
	select mission, scId, name, lgtYrsFromSun, hrsPerRotation, yrsPerRev
	from missions, planets
	where missions.objective *= planets.name
	go
	**
	**
	** TRIGGERS
	**
	**
	reset
	/*
	** TRIGGER
	** missionsInsUpdTrig
	**
	** FUNCTION
	** The mission's objective value must be NULL or it must be in the
	** "planets" table before it can be used for insert or update.
	*/
	create trigger missionsInsUpdTrig
	on missions
	for insert, update
	as
	begin
	declare @objective name
	select @objective = objective from inserted
	if @objective = null
	begin
	return
	end
	if not exists (select * from planets where name = @objective)
	begin
	print "Mission's objective not found in 'planets' table."
	rollback transaction
	end
	end
	go
	/*
	** TRIGGER
	** missionsDelTrig
	**
	** FUNCTION
	** Only the owner of the table can delete a row.
	*/
	create trigger missionsDelTrig
	on missions
	for delete
	as
	begin
	if not exists (select * from sysobjects
	where id = object_id ("missions")
	and uid = user_id())
	begin
	print "Only the table's owner can delete rows."
	rollback transaction
	end
	end
	go
	**
	**
	** PROCEDURES
	**
	**
	reset
	/*
	** PROCEDURE
	** showMissions [missionName]
	**
	** FUNCTION
	** Show mission information. If name is supplied, information for that
	** mission.
	*/
	create procedure showMissions
	@missionName name = null
	as
	begin
	print " MISSION INFORMATION"
	print " "
	if @missionName = null
	begin
	select mission, scId, objective
	from missions
	order by mission
	end
	else
	begin
	select mission, scId, objective
	from missions
	where mission = @missionName
	end
	end
	go
	/*
	** PROCEDURE
	** showPlanets [planetName]
	**
	** FUNCTION
	** Display information about planets in the Solar System.
	*/
	create procedure showPlanets
	@planetName name = null
	as
	begin
	if @planetName = null
	begin
	select name, lgtYrsFromSun, hrsPerRotation, yrsPerRev
	from planets
	order by number
	end
	else
	begin
	select name, lgtYrsFromSun, hrsPerRotation, yrsPerRev
	from planets
	where name = @planetName
	end
	end
	go
	reset
	/*
	** PROCEDURE
	** showMissionObjective [mission]
	**
	** FUNCTION
	** Display information about the planets visited by spacecraft missions.
	*/
	create procedure showMissionObjective
	@mission name = null
	as
	begin
	if @mission = null
	begin
	select mission, planet
	from missionObjective
	end
	else
	begin
	select mission, planet
	from missionObjective
	where mission = @mission
	end
	end
	go
	**
	**
	** CAPABILITIES
	**
	**
	reset
	grant select, insert, update on missions to public
	grant select on planets to public
	grant select on missionObjective to public
	grant exec on showMissions to public
	grant exec on showPlanets to public
	grant exec on showMissionObjective to public
	go
	**
	**
	** DATA
	**
	**
	reset
	insert into planets (number, name, lgtYrsFromSun, hrsPerRotation, yrsPerRev)
	values (1, "Mercury", 6.30786185E-6, 211.284, 2.411E-1)
	insert into planets (number, name, lgtYrsFromSun, hrsPerRotation, yrsPerRev)
	values (2, "Venus", 1.14223444E-5, NULL, 6.164E-1)
	insert into planets (number, name, lgtYrsFromSun, hrsPerRotation, yrsPerRev)
	values (3, "Earth", 1.58548960E-5, 24.000, 1.000)
	insert into planets (number, name, lgtYrsFromSun, hrsPerRotation, yrsPerRev)
	values (4, "Mars", 2.42085509E-5, 24.664, 1.882E0)
	insert into planets (number, name, lgtYrsFromSun, hrsPerRotation, yrsPerRev)
	values (5, "Jupiter", 8.23431695E-5, 10.021, 12.343)
	insert into planets (number, name, lgtYrsFromSun, hrsPerRotation, yrsPerRev)
	values (6, "Saturn", 1.51047719E-4, 10.273, 29.025)
	insert into planets (number, name, lgtYrsFromSun, hrsPerRotation, yrsPerRev)
	values (7, "Uranus", 3.03459300E-4, 10.801, 84.110)
	insert into planets (number, name, lgtYrsFromSun, hrsPerRotation, yrsPerRev)
	values (8, "Neptune", 4.75646880E-4, 15.898, 165.592)
	insert into planets (number, name, lgtYrsFromSun, hrsPerRotation, yrsPerRev)
	values (9, "Pluto", 6.625671702E-4, NULL, 248.637)
	go
	insert into missions (id, mission, scId, objective, description, flying)
	values (1, "Cassini", 72, "Saturn", "The Cassini Mission to Saturn", 0)
	insert into missions (id, mission, scId, objective, description, flying)
	values (2, "GLL", 35, "Jupiter", "The Galileo Mission to Jupiter", 1)
	insert into missions (id, mission, scId, objective, description, flying)
	values (3, "MO", 91, "Mars", "The Mars Observer Mission", 1)
	insert into missions (id, mission, scId, objective, description, flying)
	values (4, "VGR", 0, NULL, "The Voyager Mission to the outer solar system", 1)
	go
	Index

